Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from sahi.prediction import ObjectPrediction | |
from sahi.utils.cv import visualize_object_predictions, read_image | |
from ultralyticsplus import YOLO, render_result | |
image_path = [ | |
['test/web form.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45], | |
['test/web form2.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45] | |
] | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
""" | |
YOLOv8 inference function | |
Args: | |
image: Input image | |
model_path: Path to the model | |
image_size: Image size | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered image | |
""" | |
model = YOLO(model_path) | |
model.overrides['conf'] = conf_threshold | |
model.overrides['iou']= iou_threshold | |
model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
model.overrides['max_det'] = 1000 | |
image = read_image(image) | |
results = model.predict(image) | |
render = render_result(model=model, image=image, result=results[0]) | |
return render | |
inputs = [ | |
gr.inputs.Image(type="filepath", label="Input Image"), | |
gr.inputs.Dropdown(["foduucom/web-form-ui-field-detection"], | |
default="foduucom/web-form-ui-field-detection", label="Model"), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.outputs.Image(type="filepath", label="Output Image") | |
title = "Ui form : web form ui field Detection in Images" | |
interface_image = gr.Interface( | |
fn=yolov8_inference, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title=model_heading, | |
description=description, | |
examples=image_path, | |
cache_examples=False, | |
theme='huggingface' | |
) | |
gr.TabbedInterface( | |
[interface_image], | |
tab_names=['Image inference'] | |
).queue().launch() |