nehulagrawal's picture
Update app.py
3cc6b2b
raw
history blame
2.25 kB
import gradio as gr
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions, read_image
from ultralyticsplus import YOLO, render_result
image_path = [
['test/web form.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45],
['test/web form2.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45]
]
def yolov8_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou']= iou_threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000
image = read_image(image)
results = model.predict(image)
render = render_result(model=model, image=image, result=results[0])
return render
inputs = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["foduucom/web-form-ui-field-detection"],
default="foduucom/web-form-ui-field-detection", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Ui form : web form ui field Detection in Images"
interface_image = gr.Interface(
fn=yolov8_inference,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
cache_examples=False,
theme='huggingface'
)
gr.TabbedInterface(
[interface_image],
tab_names=['Image inference']
).queue().launch()