chheplo commited on
Commit
9a97411
·
verified ·
1 Parent(s): b35805b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -100
app.py CHANGED
@@ -1,122 +1,146 @@
1
  import gradio as gr
2
- import torch
3
- from transformers import (
4
- AutoModelForCausalLM,
5
- AutoTokenizer,
6
- TextIteratorStreamer,
7
- BitsAndBytesConfig,
8
- )
9
  import os
10
- from threading import Thread
11
  import spaces
12
- import time
 
 
13
 
14
- token = os.environ["HF_TOKEN"]
 
15
 
16
- quantization_config = BitsAndBytesConfig(
17
- load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
18
- )
19
 
20
- model = AutoModelForCausalLM.from_pretrained(
21
- "chheplo/sft_8b_2_llama3", quantization_config=quantization_config, token=token
22
- )
23
- tok = AutoTokenizer.from_pretrained("chheplo/sft_8b_2_llama3", token=token)
24
- terminators = [
25
- tok.eos_token_id,
26
- tok.convert_tokens_to_ids("<|eot_id|>")
27
- ]
28
 
29
- if torch.cuda.is_available():
30
- device = torch.device("cuda")
31
- print(f"Using GPU: {torch.cuda.get_device_name(device)}")
32
- else:
33
- device = torch.device("cpu")
34
- print("Using CPU")
35
 
36
- # model = model.to(device)
37
- # Dispatch Errors
 
38
 
 
 
 
 
 
 
 
39
 
40
- @spaces.GPU()
41
- def chat(message, history, temperature,do_sample, max_tokens):
42
- prompt_template = """
43
- You are a helpful Agricultural assistant for farmers. You are given the following input. Please complete the response briefly.
44
- ## Question:
45
- {}
46
-
47
- ## Response:
48
- {}"""
49
- start_time = time.time()
50
- chat = []
51
- # for item in history:
52
- # chat.append({"role": "user", "content": item[0]})
53
- # if item[1] is not None:
54
- # chat.append({"role": "assistant", "content": item[1]})
55
- # chat.append({"role": "user", "content": message})
56
- # messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- model_inputs = tok(prompt_template.format(
59
- message, #input
60
- "" # response
61
- ), return_tensors="pt").to(device)
62
- streamer = TextIteratorStreamer(
63
- tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True
64
- )
65
  generate_kwargs = dict(
66
- model_inputs,
67
  streamer=streamer,
68
- max_new_tokens=max_tokens,
69
  do_sample=True,
70
  temperature=temperature,
71
- repetition_penalty=1.2,
72
- use_cache=False,
73
  eos_token_id=terminators,
74
  )
75
-
76
  if temperature == 0:
77
  generate_kwargs['do_sample'] = False
78
-
79
  t = Thread(target=model.generate, kwargs=generate_kwargs)
80
  t.start()
81
 
82
- partial_text = ""
83
- first_token_time = None
84
- for new_text in streamer:
85
- if not first_token_time:
86
- first_token_time = time.time() - start_time
87
- partial_text += new_text
88
- yield partial_text
89
-
90
- total_time = time.time() - start_time
91
- tokens = len(tok.tokenize(partial_text))
92
- tokens_per_second = tokens / total_time if total_time > 0 else 0
93
-
94
- timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
95
- yield partial_text + timing_info
96
-
97
-
98
- demo = gr.ChatInterface(
99
- fn=chat,
100
- examples=[["I'm a farmer from Odisha, how do I take care of whitefly in my cotton crop?"]],
101
- # multimodal=False,
102
- additional_inputs_accordion=gr.Accordion(
103
- label="⚙️ Parameters", open=False, render=False
104
- ),
105
- additional_inputs=[
106
- gr.Slider(
107
- minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature", render=False
108
- ),
109
- gr.Checkbox(label="Sampling",value=False),
110
- gr.Slider(
111
- minimum=128,
112
- maximum=4096,
113
- step=1,
114
- value=512,
115
- label="Max new tokens",
116
- render=False,
117
- ),
118
- ],
119
- stop_btn="Stop Generation",
120
- title="Chat With LLMs",
121
- description="Now Running [KissanAI/llama3-8b-dhenu-0.1-sft-16bit](https://huggingface.co/KissanAI/llama3-8b-dhenu-0.1-sft-16bit) in 4bit")
122
- demo.launch()
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
  import os
 
3
  import spaces
4
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
+ from threading import Thread
7
 
8
+ # Set an environment variable
9
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
 
 
 
 
11
 
12
+ DESCRIPTION = '''
13
+ <div>
14
+ <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
+ <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
+ <p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
+ <p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
+ </div>
19
+ '''
20
 
21
+ LICENSE = """
22
+ <p/>
 
 
 
 
23
 
24
+ ---
25
+ Built with Meta Llama 3
26
+ """
27
 
28
+ PLACEHOLDER = """
29
+ <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
30
+ <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
31
+ <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
32
+ <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
33
+ </div>
34
+ """
35
 
36
+
37
+ css = """
38
+ h1 {
39
+ text-align: center;
40
+ display: block;
41
+ }
42
+
43
+ #duplicate-button {
44
+ margin: auto;
45
+ color: white;
46
+ background: #1565c0;
47
+ border-radius: 100vh;
48
+ }
49
+ """
50
+
51
+ # Load the tokenizer and model
52
+ tokenizer = AutoTokenizer.from_pretrained("chheplo/sft_8b_2_llama3")
53
+ model = AutoModelForCausalLM.from_pretrained("chheplo/sft_8b_2_llama3", device_map="auto") # to("cuda:0")
54
+ terminators = [
55
+ tokenizer.eos_token_id,
56
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
57
+ ]
58
+
59
+ @spaces.GPU(duration=120)
60
+ def chat_llama3_8b(message: str,
61
+ history: list,
62
+ temperature: float,
63
+ max_new_tokens: int
64
+ ) -> str:
65
+ """
66
+ Generate a streaming response using the llama3-8b model.
67
+ Args:
68
+ message (str): The input message.
69
+ history (list): The conversation history used by ChatInterface.
70
+ temperature (float): The temperature for generating the response.
71
+ max_new_tokens (int): The maximum number of new tokens to generate.
72
+ Returns:
73
+ str: The generated response.
74
+ """
75
+ conversation = []
76
+ for user, assistant in history:
77
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
78
+ conversation.append({"role": "user", "content": message})
79
+
80
+ input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
81
 
82
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
83
+
 
 
 
 
 
84
  generate_kwargs = dict(
85
+ input_ids= input_ids,
86
  streamer=streamer,
87
+ max_new_tokens=max_new_tokens,
88
  do_sample=True,
89
  temperature=temperature,
 
 
90
  eos_token_id=terminators,
91
  )
92
+ # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
93
  if temperature == 0:
94
  generate_kwargs['do_sample'] = False
95
+
96
  t = Thread(target=model.generate, kwargs=generate_kwargs)
97
  t.start()
98
 
99
+ outputs = []
100
+ for text in streamer:
101
+ outputs.append(text)
102
+ #print(outputs)
103
+ yield "".join(outputs)
104
+
105
+
106
+ # Gradio block
107
+ chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
108
+
109
+ with gr.Blocks(fill_height=True, css=css) as demo:
110
+
111
+ gr.Markdown(DESCRIPTION)
112
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
113
+ gr.ChatInterface(
114
+ fn=chat_llama3_8b,
115
+ chatbot=chatbot,
116
+ fill_height=True,
117
+ additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
118
+ additional_inputs=[
119
+ gr.Slider(minimum=0,
120
+ maximum=1,
121
+ step=0.1,
122
+ value=0.95,
123
+ label="Temperature",
124
+ render=False),
125
+ gr.Slider(minimum=128,
126
+ maximum=4096,
127
+ step=1,
128
+ value=512,
129
+ label="Max new tokens",
130
+ render=False ),
131
+ ],
132
+ examples=[
133
+ ['How to setup a human base on Mars? Give short answer.'],
134
+ ['Explain theory of relativity to me like I’m 8 years old.'],
135
+ ['What is 9,000 * 9,000?'],
136
+ ['Write a pun-filled happy birthday message to my friend Alex.'],
137
+ ['Justify why a penguin might make a good king of the jungle.']
138
+ ],
139
+ cache_examples=False,
140
+ )
141
+
142
+ gr.Markdown(LICENSE)
143
+
144
+ if __name__ == "__main__":
145
+ demo.launch()
146
+