Arkm20's picture
Add application file
03d5c24
raw
history blame
4.09 kB
import gradio as gr
import numpy as np
import os
import random
import requests
from PIL import Image
from io import BytesIO
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
class APIClient:
def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"):
self.headers = {
"Content-Type": "application/json",
"Accept": "image/jpeg",
"Authorization": f"Bearer {api_key}"
}
self.base_url = f"https://{base_url}"
def _post(self, url, json=None):
r = requests.post(url, headers=self.headers, json=json)
r.raise_for_status()
return Image.open(BytesIO(r.content)).convert("RGB")
def job(self, config):
body = {"type": "inference.flux.dev.txt2img.v1", "config": config}
return self._post(f"{self.base_url}/v2/job", json=body)
def infer(prompt, seed=42, randomize_seed=False, resolution="1024x1024", guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
width, height = resolution.split("x")
image = generative_api.job({
"prompt": prompt,
"width": int(width),
"height": int(height),
"seed": seed,
"steps": num_inference_steps,
"guidance_scale": guidance_scale
})
return image, seed
generative_api = APIClient()
with open("header.md", "r") as file:
header = file.read()
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
.image-container img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 0px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(header)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt"
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False, format="jpeg")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
resolution = gr.Dropdown(
label="Resolution",
value="1024x1024",
choices=[
"1024x1024",
"1024x576",
"576x1024"
]
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, resolution, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.queue(default_concurrency_limit=12, max_size=14, api_open=True).launch(max_threads=256, show_api=True)