Spaces:
Sleeping
Sleeping
File size: 2,676 Bytes
265e86e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import yfinance as yf
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
def get_stock_data(ticker):
today = datetime.today().strftime('%Y-%m-%d')
year_ago = (datetime.today() - timedelta(days=365)).strftime('%Y-%m-%d')
stock_data = yf.download(ticker, start=year_ago, end=today)
return stock_data
def preprocess_data(data):
data['Date'] = pd.to_datetime(data.index)
data['Date_ordinal'] = data['Date'].map(datetime.toordinal)
return data[['Date_ordinal', 'Close']]
def train_model(data):
X = data[['Date_ordinal']]
y = data['Close']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
return model
def predict_price(model, date):
date_ordinal = datetime.toordinal(pd.to_datetime(date))
date_df = pd.DataFrame([[date_ordinal]], columns=['Date_ordinal'])
prediction = model.predict(date_df)
return prediction[0]
def plot_prediction(stock_data, ticker, prediction_date, predicted_price):
plt.figure(figsize=(12, 6))
plt.plot(stock_data.index, stock_data['Close'], label='Historical Data')
plt.scatter(prediction_date, predicted_price, color='red', label='Prediction')
plt.title(f'{ticker} Stock Price Prediction')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.savefig('prediction_plot.png')
return 'prediction_plot.png'
def predict_stock(ticker, date):
stock_data = get_stock_data(ticker)
if stock_data.empty:
return "No data found for the given ticker.", None
latest_price = stock_data['Close'].iloc[-1]
processed_data = preprocess_data(stock_data)
model = train_model(processed_data)
try:
predicted_price = predict_price(model, date)
plot_path = plot_prediction(stock_data, ticker, pd.to_datetime(date), predicted_price)
return f"The predicted closing price for {ticker} on {date} is: ${predicted_price:.2f}", plot_path
except ValueError:
return "Invalid date format. Please enter the date in YYYY-MM-DD format.", None
# Gradio app interface
inputs = [
gr.Textbox(label="Enter the stock ticker"),
gr.Textbox(label="Enter the date (YYYY-MM-DD) for the prediction")
]
outputs = [
gr.Text(label="Prediction"),
gr.Image(label="Prediction Plot")
]
gr.Interface(fn=predict_stock, inputs=inputs, outputs=outputs, title="Stock Price Prediction").launch(share=True)
|