X_u2net_portraits / app(25).py
Arrcttacsrks's picture
Upload app(25).py
3ed14cc verified
import os
import cv2
import torch
from model import U2NET
from torch.autograd import Variable
import numpy as np
from huggingface_hub import hf_hub_download
import gradio as gr
class PortraitGenerator:
def __init__(self):
self.u2net = self.load_u2net_model()
def normPRED(self, d):
return (d - torch.min(d)) / (torch.max(d) - torch.min(d))
def inference(self, input_img):
input_img = input_img / np.max(input_img)
tmpImg = np.zeros((input_img.shape[0], input_img.shape[1], 3))
tmpImg[:, :, 0] = (input_img[:, :, 2] - 0.406) / 0.225
tmpImg[:, :, 1] = (input_img[:, :, 1] - 0.456) / 0.224
tmpImg[:, :, 2] = (input_img[:, :, 0] - 0.485) / 0.229
tmpImg = torch.from_numpy(tmpImg.transpose((2, 0, 1))[np.newaxis, :, :, :]).type(torch.FloatTensor)
tmpImg = Variable(tmpImg.cuda() if torch.cuda.is_available() else tmpImg)
d1, _, _, _, _, _, _ = self.u2net(tmpImg)
pred = self.normPRED(1.0 - d1[:, 0, :, :])
return pred.cpu().data.numpy().squeeze()
def adjust_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction):
# Convert to grayscale if needed
if apply_bw:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# Adjust brightness and contrast
img = cv2.convertScaleAbs(img, alpha=contrast / 50.0, beta=brightness - 50)
# Adjust saturation
if saturation != 50:
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hsv_img[:, :, 1] = np.clip(hsv_img[:, :, 1] * (saturation / 50.0), 0, 255)
img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
# Adjust white balance
if white_balance != 50:
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(img)
a = a * (white_balance / 50.0)
b = b * (white_balance / 50.0)
img = cv2.merge((l, a, b))
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
# Adjust hue
if hue != 50:
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hsv_img[:, :, 0] = np.clip(hsv_img[:, :, 0] * (hue / 50.0), 0, 180)
img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
# Adjust highlights and shadows
if highlights_shadows != 50:
img = cv2.convertScaleAbs(img, alpha=1.0, beta=(highlights_shadows - 50) * 5.1)
# Adjust sharpness
if sharpness != 50:
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) * (sharpness / 50.0)
img = cv2.filter2D(img, -1, kernel)
# Reduce noise
if noise_reduction != 50:
img = cv2.fastNlMeansDenoisingColored(img, None, noise_reduction / 50.0 * 10, noise_reduction / 50.0 * 10, 7, 21)
return img
def process_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction, apply_adjustments, generate_final):
if not generate_final:
preview_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction)
return preview_img
adjusted_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction)
result = self.inference(adjusted_img)
return (result * 255).astype(np.uint8)
def load_u2net_model(self):
model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN"))
net = U2NET(3, 1)
net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu"))
net.eval()
return net
def main():
portrait_generator = PortraitGenerator()
iface = gr.Interface(
fn=portrait_generator.process_image,
inputs=[
gr.Image(type="numpy", label="Upload your image"),
gr.Checkbox(label="Black & White Image"),
gr.Slider(0, 100, value=50, label="Brightness"),
gr.Slider(0, 100, value=50, label="Contrast"),
gr.Slider(0, 100, value=50, label="Saturation"),
gr.Slider(0, 100, value=50, label="White Balance"),
gr.Slider(0, 100, value=50, label="Hue"),
gr.Slider(0, 100, value=50, label="Highlights and Shadows"),
gr.Slider(0, 100, value=50, label="Sharpness"),
gr.Slider(0, 100, value=50, label="Noise Reduction"),
gr.Checkbox(label="Apply Adjustments"),
gr.Checkbox(label="Generate Final Portrait")
],
outputs=gr.Image(type="numpy", label="Preview or Portrait Result"),
title="Portrait Generation with U2NET",
description="Upload an image to generate its portrait with optional adjustments. Enable 'Generate Final Portrait' for final output."
)
iface.launch()
if __name__ == "__main__":
main()