File size: 7,475 Bytes
f89c8ce
3369106
f89c8ce
3369106
f89c8ce
3369106
f89c8ce
 
8eab835
3369106
 
 
 
4b6f416
3369106
8d4309d
3369106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf4dac
3369106
 
aaf4dac
3369106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9392609
3369106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9392609
3369106
 
 
 
 
 
 
 
4b6f416
 
3369106
 
8d4309d
3369106
 
 
 
 
 
 
4b6f416
3369106
 
 
9392609
3369106
 
 
 
 
 
 
 
 
 
 
 
 
 
56ee6a5
3369106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ee6a5
3369106
 
 
 
 
 
 
 
 
 
 
 
 
 
56ee6a5
3369106
 
 
4b6f416
3369106
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_audioclips
import whisper
from transformers import MBartForConditionalGeneration, MBartTokenizer
from gtts import gTTS
import torch
import tempfile
import os
import numpy as np
from pydub import AudioSegment
import librosa
import warnings
warnings.filterwarnings('ignore')

# Initialize models and configs
@st.cache_resource
def load_models():
    whisper_model = whisper.load_model("large")
    tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
    model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
    return whisper_model, tokenizer, model

# Tamil language configuration
TAMIL_CONFIG = {
    'code': 'ta',
    'whisper_code': 'tamil',
    'mbart_code': 'ta_IN',
    'gtts_code': 'ta',
    'voice_speed': 1.1,  # Adjust speed for better sync
    'sample_rate': 22050
}

# Streamlit UI setup
st.set_page_config(page_title="Tamil Video Dubbing AI", page_icon="πŸŽ₯", layout="wide")

def create_custom_style():
    st.markdown("""
        <style>
        .stApp {
            background-color: #f5f5f5;
        }
        .main {
            padding: 2rem;
        }
        .stButton>button {
            background-color: #FF4B4B;
            color: white;
            font-weight: bold;
        }
        </style>
    """, unsafe_allow_html=True)

create_custom_style()

def translate_text(text, tokenizer, model):
    """Enhanced translation specifically for Tamil using MBart"""
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    translated_tokens = model.generate(
        **inputs,
        forced_bos_token_id=tokenizer.lang_code_to_id["ta_IN"],
        num_beams=5,
        length_penalty=1.0,
        max_length=512,
        min_length=0,
        do_sample=True,
        temperature=0.7
    )
    return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]

def process_audio_for_sync(audio_path, target_speed=1.0):
    """Process audio for better synchronization"""
    audio = AudioSegment.from_file(audio_path)
    
    # Adjust speed without changing pitch
    if target_speed != 1.0:
        sound_with_altered_frame_rate = audio._spawn(audio.raw_data, overrides={
            "frame_rate": int(audio.frame_rate * target_speed)
        })
        audio = sound_with_altered_frame_rate.set_frame_rate(audio.frame_rate)
    
    return audio

def main():
    st.title("πŸŽ₯ Tamil Video Dubbing AI")
    st.markdown("### Advanced Video Translation and Dubbing System")
    
    # Load models
    try:
        with st.spinner("Loading AI models..."):
            whisper_model, tokenizer, translation_model = load_models()
        st.success("Models loaded successfully! πŸš€")
    except Exception as e:
        st.error(f"Error loading models: {e}")
        return

    # File uploader with progress
    video_file = st.file_uploader("Upload your video file", type=["mp4", "mov", "avi"])
    
    if video_file:
        # Video preview
        st.video(video_file)
        
        # Advanced settings
        with st.expander("Advanced Settings"):
            voice_speed = st.slider("Voice Speed", 0.5, 1.5, TAMIL_CONFIG['voice_speed'], 0.1)
            quality_level = st.select_slider(
                "Translation Quality",
                options=["Draft", "Standard", "High Quality"],
                value="Standard"
            )

        if st.button("Start Tamil Dubbing", key="start_dubbing"):
            try:
                with st.spinner("Processing your video..."):
                    # Save uploaded video
                    temp_video_path = tempfile.mktemp(suffix='.mp4')
                    with open(temp_video_path, 'wb') as f:
                        f.write(video_file.read())

                    # Process steps with progress bar
                    progress_bar = st.progress(0)
                    status_text = st.empty()

                    # Extract audio
                    status_text.text("Extracting audio...")
                    video = VideoFileClip(temp_video_path)
                    audio_path = tempfile.mktemp(suffix=".wav")
                    video.audio.write_audiofile(audio_path, fps=TAMIL_CONFIG['sample_rate'])
                    progress_bar.progress(20)

                    # Transcribe
                    status_text.text("Transcribing audio...")
                    result = whisper_model.transcribe(audio_path, language=TAMIL_CONFIG['whisper_code'])
                    original_text = result["text"]
                    progress_bar.progress(40)

                    # Translate
                    status_text.text("Translating to Tamil...")
                    translated_text = translate_text(original_text, tokenizer, translation_model)
                    progress_bar.progress(60)

                    # Generate Tamil speech
                    status_text.text("Generating Tamil speech...")
                    tts = gTTS(text=translated_text, lang=TAMIL_CONFIG['gtts_code'])
                    translated_audio_path = tempfile.mktemp(suffix=".mp3")
                    tts.save(translated_audio_path)
                    progress_bar.progress(80)

                    # Final video creation
                    status_text.text("Creating final video...")
                    dubbed_audio = process_audio_for_sync(translated_audio_path, voice_speed)
                    final_audio_path = tempfile.mktemp(suffix=".wav")
                    dubbed_audio.export(final_audio_path, format="wav")

                    # Combine video with new audio
                    final_video_path = tempfile.mktemp(suffix=".mp4")
                    final_audio = AudioFileClip(final_audio_path)
                    final_video = video.set_audio(final_audio)
                    final_video.write_videofile(final_video_path, codec='libx264', audio_codec='aac')
                    progress_bar.progress(100)

                    # Display results
                    st.success("Video dubbed successfully! πŸŽ‰")
                    st.video(final_video_path)

                    # Download options
                    col1, col2 = st.columns(2)
                    with col1:
                        with open(final_video_path, "rb") as f:
                            st.download_button(
                                "Download Dubbed Video",
                                f,
                                file_name="tamil_dubbed_video.mp4",
                                mime="video/mp4"
                            )
                    
                    with col2:
                        st.download_button(
                            "Download Tamil Script",
                            translated_text,
                            file_name="tamil_script.txt",
                            mime="text/plain"
                        )

                    # Clean up
                    for path in [temp_video_path, audio_path, translated_audio_path, 
                               final_audio_path, final_video_path]:
                        if os.path.exists(path):
                            os.remove(path)

            except Exception as e:
                st.error(f"An error occurred: {e}")
                st.info("Please try again with a different video or check your internet connection.")

if __name__ == "__main__":
    main()