File size: 24,708 Bytes
f8dbf90
 
1b83088
98e1f97
1b83088
00814c9
4bf76df
 
c059984
 
00814c9
 
 
 
 
8c39446
 
c059984
00814c9
d4a5735
00814c9
8c39446
90eba29
a66a809
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8dbf90
1b83088
 
3134b3b
1b83088
f8dbf90
c059984
 
 
 
f8dbf90
 
 
90eba29
f8dbf90
3134b3b
c059984
1b83088
f8dbf90
cba9efc
f8dbf90
c059984
00814c9
9f8e60f
 
 
 
00814c9
 
90eba29
 
 
 
 
00814c9
 
 
c059984
 
00814c9
 
 
 
 
c059984
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00814c9
 
 
c059984
00814c9
 
 
 
 
 
ca9dc4d
00814c9
 
 
90eba29
00814c9
90eba29
00814c9
90eba29
00814c9
 
 
c059984
00814c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8639b
00814c9
 
 
 
 
90eba29
8c39446
 
90eba29
 
 
 
 
 
8c39446
 
 
 
 
 
c059984
 
8c39446
c059984
00814c9
 
c059984
 
 
00814c9
c059984
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a5735
c059984
8c39446
 
c059984
 
 
 
 
 
 
 
 
8c39446
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a66a809
c059984
d4a5735
c059984
 
 
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00814c9
c059984
 
 
 
 
 
 
 
 
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
00814c9
c059984
 
 
 
 
75b06d3
 
8c39446
c059984
 
 
 
 
 
 
 
 
 
 
d4a5735
c059984
d4a5735
c059984
d35faf8
00814c9
83ac817
c059984
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
00814c9
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00814c9
c059984
8c39446
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00814c9
 
f1447e0
d35faf8
990d424
8c39446
d35faf8
75b06d3
 
c059984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
import docker
import sympy as sp
from scipy.optimize import minimize, differential_evolution
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display
from tenacity import retry, stop_after_attempt, wait_fixed
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel
import networkx as nx
from sklearn.cluster import KMeans
from scipy.stats import ttest_ind
from statsmodels.tsa.arima.model import ARIMA
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
import cv2
from PIL import Image
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions

# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])

# Create the model with optimized parameters and enhanced system instructions
generation_config = {
    "temperature": 0.4,
    "top_p": 0.8,
    "top_k": 50,
    "max_output_tokens": 4096,
}

model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    system_instruction="""
    You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains including machine learning, data science, web development, cloud computing, and more. Your responses should showcase cutting-edge techniques, best practices, and innovative solutions.
    """
)
chat_session = model.start_chat(history=[])

@retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
def generate_response(user_input):
    try:
        response = chat_session.send_message(user_input)
        return response.text
    except Exception as e:
        return f"Error: {e}"

def optimize_code(code):
    with open("temp_code.py", "w") as file:
        file.write(code)
    result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
    os.remove("temp_code.py")
    return code

def fetch_from_github(query):
    # Implement GitHub API interaction here
    pass

def interact_with_api(api_url):
    response = requests.get(api_url)
    return response.json()

def train_advanced_ml_model(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    models = {
        'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
        'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42)
    }
    results = {}
    for name, model in models.items():
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        results[name] = {
            'accuracy': accuracy_score(y_test, y_pred),
            'precision': precision_score(y_test, y_pred, average='weighted'),
            'recall': recall_score(y_test, y_pred, average='weighted'),
            'f1': f1_score(y_test, y_pred, average='weighted')
        }
    return results

def handle_error(error):
    st.error(f"An error occurred: {error}")
    # Implement advanced error logging and notification system here

def initialize_git_repo(repo_path):
    if not os.path.exists(repo_path):
        os.makedirs(repo_path)
    if not os.path.exists(os.path.join(repo_path, '.git')):
        repo = git.Repo.init(repo_path)
    else:
        repo = git.Repo(repo_path)
    return repo

def integrate_with_git(repo_path, code):
    repo = initialize_git_repo(repo_path)
    with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
        file.write(code)
    repo.index.add(["generated_code.py"])
    repo.index.commit("Added generated code")

def process_user_input(user_input):
    nlp = spacy.load("en_core_web_sm")
    doc = nlp(user_input)
    return doc

def interact_with_cloud_services(service_name, action, params):
    client = boto3.client(service_name)
    response = getattr(client, action)(**params)
    return response

def run_tests():
    tests_dir = os.path.join(os.getcwd(), 'tests')
    if not os.path.exists(tests_dir):
        os.makedirs(tests_dir)
    init_file = os.path.join(tests_dir, '__init__.py')
    if not os.path.exists(init_file):
        with open(init_file, 'w') as f:
            f.write('')
    
    test_suite = unittest.TestLoader().discover(tests_dir)
    test_runner = unittest.TextTestRunner()
    test_result = test_runner.run(test_suite)
    return test_result

def execute_code_in_docker(code):
    client = docker.from_env()
    try:
        container = client.containers.run(
            image="python:3.9",
            command=f"python -c '{code}'",
            detach=True,
            remove=True
        )
        result = container.wait()
        logs = container.logs().decode('utf-8')
        return logs, result['StatusCode']
    except Exception as e:
        return f"Error: {e}", 1

def solve_complex_equation(equation):
    x, y, z = sp.symbols('x y z')
    eq = sp.Eq(eval(equation))
    solution = sp.solve(eq)
    return solution

def advanced_optimization(function, bounds):
    result = differential_evolution(lambda x: eval(function), bounds)
    return result.x, result.fun

def visualize_complex_data(data):
    df = pd.DataFrame(data)
    fig, axs = plt.subplots(2, 2, figsize=(16, 12))
    
    sns.heatmap(df.corr(), annot=True, cmap='coolwarm', ax=axs[0, 0])
    axs[0, 0].set_title('Correlation Heatmap')
    
    sns.pairplot(df, diag_kind='kde', ax=axs[0, 1])
    axs[0, 1].set_title('Pairplot')
    
    df.plot(kind='box', ax=axs[1, 0])
    axs[1, 0].set_title('Box Plot')
    
    sns.violinplot(data=df, ax=axs[1, 1])
    axs[1, 1].set_title('Violin Plot')
    
    plt.tight_layout()
    return fig

def analyze_complex_data(data):
    df = pd.DataFrame(data)
    summary = df.describe()
    correlation = df.corr()
    skewness = df.skew()
    kurtosis = df.kurtosis()
    return {
        'summary': summary,
        'correlation': correlation,
        'skewness': skewness,
        'kurtosis': kurtosis
    }

def train_deep_learning_model(X, y):
    class DeepNN(nn.Module):
        def __init__(self, input_size):
            super(DeepNN, self).__init__()
            self.fc1 = nn.Linear(input_size, 64)
            self.fc2 = nn.Linear(64, 32)
            self.fc3 = nn.Linear(32, 1)
        
        def forward(self, x):
            x = torch.relu(self.fc1(x))
            x = torch.relu(self.fc2(x))
            x = torch.sigmoid(self.fc3(x))
            return x

    X_tensor = torch.FloatTensor(X.values)
    y_tensor = torch.FloatTensor(y.values)

    model = DeepNN(X.shape[1])
    criterion = nn.BCELoss()
    optimizer = optim.Adam(model.parameters())

    epochs = 100
    for epoch in range(epochs):
        optimizer.zero_grad()
        outputs = model(X_tensor)
        loss = criterion(outputs, y_tensor.unsqueeze(1))
        loss.backward()
        optimizer.step()

    return model

def perform_nlp_analysis(text):
    nlp = spacy.load("en_core_web_sm")
    doc = nlp(text)
    
    entities = [(ent.text, ent.label_) for ent in doc.ents]
    tokens = [token.text for token in doc]
    pos_tags = [(token.text, token.pos_) for token in doc]
    
    sia = SentimentIntensityAnalyzer()
    sentiment = sia.polarity_scores(text)
    
    return {
        'entities': entities,
        'tokens': tokens,
        'pos_tags': pos_tags,
        'sentiment': sentiment
    }

def perform_image_analysis(image_path):
    img = cv2.imread(image_path)
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    
    # Perform object detection
    model = ResNet50(weights='imagenet')
    img_resized = cv2.resize(img_rgb, (224, 224))
    img_array = image.img_to_array(img_resized)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = preprocess_input(img_array)
    
    predictions = model.predict(img_array)
    decoded_predictions = decode_predictions(predictions, top=3)[0]
    
    # Perform edge detection
    edges = cv2.Canny(img, 100, 200)
    
    return {
        'predictions': decoded_predictions,
        'edges': edges
    }

def perform_time_series_analysis(data):
    df = pd.DataFrame(data)
    model = ARIMA(df, order=(1, 1, 1))
    results = model.fit()
    forecast = results.forecast(steps=5)
    return {
        'model_summary': results.summary(),
        'forecast': forecast
    }

def perform_graph_analysis(nodes, edges):
    G = nx.Graph()
    G.add_nodes_from(nodes)
    G.add_edges_from(edges)
    
    centrality = nx.degree_centrality(G)
    clustering = nx.clustering(G)
    shortest_paths = dict(nx.all_pairs_shortest_path_length(G))
    
    return {
        'centrality': centrality,
        'clustering': clustering,
        'shortest_paths': shortest_paths
    }

# Streamlit UI setup
st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="πŸš€", layout="wide")

# ... (Keep the existing CSS styles)

st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("πŸš€ Ultra AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Advanced AI and Domain Expertise</p>', unsafe_allow_html=True)

task_type = st.selectbox("Select Task Type", [
    "Code Generation",
    "Machine Learning",
    "Data Analysis",
    "Natural Language Processing",
    "Image Analysis",
    "Time Series Analysis",
    "Graph Analysis"
])

prompt = st.text_area("Enter your task description or code:", height=120)

if st.button("Execute Task"):
    if prompt.strip() == "":
        st.error("Please enter a valid prompt.")
    else:
        with st.spinner("Processing your request..."):
            try:
                if task_type == "Code Generation":
                    processed_input = process_user_input(prompt)
                    completed_text = generate_response(processed_input.text)
                    if "Error" in completed_text:
                        handle_error(completed_text)
                    else:
                        optimized_code = optimize_code(completed_text)
                        st.success("Code generated and optimized successfully!")
                        
                        st.markdown('<div class="output-container">', unsafe_allow_html=True)
                        st.markdown('<div class="code-block">', unsafe_allow_html=True)
                        st.code(optimized_code)
                        st.markdown('</div>', unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                        
                        repo_path = "./repo"
                        integrate_with_git(repo_path, optimized_code)
                        
                        test_result = run_tests()
                        if test_result.wasSuccessful():
                            st.success("All tests passed successfully!")
                        else:
                            st.error("Some tests failed. Please check the code.")
                        
                        execution_result, status_code = execute_code_in_docker(optimized_code)
                        if status_code == 0:
                            st.success("Code executed successfully in Docker!")
                            st.text(execution_result)
                        else:
                            st.error(f"Code execution failed: {execution_result}")
                
                elif task_type == "Machine Learning":
                    # For demonstration, we'll use a sample dataset
                    from sklearn.datasets import make_classification
                    X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
                    results = train_advanced_ml_model(X, y)
                    st.write("Machine Learning Model Performance:")
                    st.json(results)
                    
                    st.write("Deep Learning Model:")
                    deep_model = train_deep_learning_model(pd.DataFrame(X), pd.Series(y))
                    st.write(deep_model)
                
                elif task_type == "Data Analysis":
                    # For demonstration, we'll use a sample dataset
                    data = pd.DataFrame(np.random.randn(100, 5), columns=['A', 'B', 'C', 'D', 'E'])
                    analysis_results = analyze_complex_data(data)
                    st.write("Data Analysis Results:")
                    st.write(analysis_results['summary'])
                    st.write("Correlation Matrix:")
                    st.write(analysis_results['correlation'])
                    
                    fig = visualize_complex_data(data)
                    st.pyplot(fig)
                
                elif task_type == "Natural Language Processing":
                    nlp_results = perform_nlp_analysis(prompt)
                    st.write("NLP Analysis Results:")
                    st.json(nlp_results)
                    elif task_type == "Image Analysis":
                    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
                    if uploaded_file is not None:
                        image = Image.open(uploaded_file)
                        st.image(image, caption='Uploaded Image', use_column_width=True)
                        
                        # Save the uploaded image temporarily
                        with open("temp_image.jpg", "wb") as f:
                            f.write(uploaded_file.getbuffer())
                        
                        analysis_results = perform_image_analysis("temp_image.jpg")
                        
                        st.write("Image Analysis Results:")
                        st.write("Top 3 predictions:")
                        for i, (imagenet_id, label, score) in enumerate(analysis_results['predictions']):
                            st.write(f"{i + 1}: {label} ({score:.2f})")
                        
                        st.write("Edge Detection:")
                        st.image(analysis_results['edges'], caption='Edge Detection', use_column_width=True)
                        
                        # Remove the temporary image file
                        os.remove("temp_image.jpg")
                
                elif task_type == "Time Series Analysis":
                    # For demonstration, we'll use a sample time series dataset
                    dates = pd.date_range(start='1/1/2020', end='1/1/2021', freq='D')
                    values = np.random.randn(len(dates)).cumsum()
                    ts_data = pd.Series(values, index=dates)
                    
                    st.line_chart(ts_data)
                    
                    analysis_results = perform_time_series_analysis(ts_data)
                    st.write("Time Series Analysis Results:")
                    st.write(analysis_results['model_summary'])
                    st.write("Forecast for the next 5 periods:")
                    st.write(analysis_results['forecast'])
                
                elif task_type == "Graph Analysis":
                    # For demonstration, we'll use a sample graph
                    nodes = range(1, 11)
                    edges = [(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (5, 9), (6, 10)]
                    
                    analysis_results = perform_graph_analysis(nodes, edges)
                    st.write("Graph Analysis Results:")
                    st.write("Centrality:")
                    st.json(analysis_results['centrality'])
                    st.write("Clustering Coefficient:")
                    st.json(analysis_results['clustering'])
                    
                    # Visualize the graph
                    G = nx.Graph()
                    G.add_nodes_from(nodes)
                    G.add_edges_from(edges)
                    fig, ax = plt.subplots(figsize=(10, 8))
                    nx.draw(G, with_labels=True, node_color='lightblue', node_size=500, font_size=16, font_weight='bold', ax=ax)
                    st.pyplot(fig)
            
            except Exception as e:
                handle_error(e)

st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
    Created with ❀️ by Your Ultra AI Code Assistant
</div>
""", unsafe_allow_html=True)

st.markdown('</div>', unsafe_allow_html=True)

# Additional helper functions

def explain_code(code):
    """Generate an explanation for the given code using NLP techniques."""
    explanation = generate_response(f"Explain the following code:\n\n{code}")
    return explanation

def generate_unit_tests(code):
    """Generate unit tests for the given code."""
    unit_tests = generate_response(f"Generate unit tests for the following code:\n\n{code}")
    return unit_tests

def suggest_optimizations(code):
    """Suggest optimizations for the given code."""
    optimizations = generate_response(f"Suggest optimizations for the following code:\n\n{code}")
    return optimizations

def generate_documentation(code):
    """Generate documentation for the given code."""
    documentation = generate_response(f"Generate documentation for the following code:\n\n{code}")
    return documentation

# Add these new functions to the Streamlit UI
if task_type == "Code Generation":
    st.sidebar.header("Code Analysis Tools")
    if st.sidebar.button("Explain Code"):
        explanation = explain_code(optimized_code)
        st.sidebar.subheader("Code Explanation")
        st.sidebar.write(explanation)
    
    if st.sidebar.button("Generate Unit Tests"):
        unit_tests = generate_unit_tests(optimized_code)
        st.sidebar.subheader("Generated Unit Tests")
        st.sidebar.code(unit_tests)
    
    if st.sidebar.button("Suggest Optimizations"):
        optimizations = suggest_optimizations(optimized_code)
        st.sidebar.subheader("Suggested Optimizations")
        st.sidebar.write(optimizations)
    
    if st.sidebar.button("Generate Documentation"):
        documentation = generate_documentation(optimized_code)
        st.sidebar.subheader("Generated Documentation")
        st.sidebar.write(documentation)

# Add more advanced features
def perform_security_analysis(code):
    """Perform a basic security analysis on the given code."""
    security_analysis = generate_response(f"Perform a security analysis on the following code and suggest improvements:\n\n{code}")
    return security_analysis

def generate_api_documentation(code):
    """Generate API documentation for the given code."""
    api_docs = generate_response(f"Generate API documentation for the following code:\n\n{code}")
    return api_docs

def suggest_design_patterns(code):
    """Suggest appropriate design patterns for the given code."""
    design_patterns = generate_response(f"Suggest appropriate design patterns for the following code:\n\n{code}")
    return design_patterns

# Add these new functions to the Streamlit UI
if task_type == "Code Generation":
    st.sidebar.header("Advanced Code Analysis")
    if st.sidebar.button("Security Analysis"):
        security_analysis = perform_security_analysis(optimized_code)
        st.sidebar.subheader("Security Analysis")
        st.sidebar.write(security_analysis)
    
    if st.sidebar.button("Generate API Documentation"):
        api_docs = generate_api_documentation(optimized_code)
        st.sidebar.subheader("API Documentation")
        st.sidebar.write(api_docs)
    
    if st.sidebar.button("Suggest Design Patterns"):
        design_patterns = suggest_design_patterns(optimized_code)
        st.sidebar.subheader("Suggested Design Patterns")
        st.sidebar.write(design_patterns)

# Add a feature to generate a complete project structure
def generate_project_structure(project_description):
    """Generate a complete project structure based on the given description."""
    project_structure = generate_response(f"Generate a complete project structure for the following project description:\n\n{project_description}")
    return project_structure

# Add this new function to the Streamlit UI
if st.sidebar.button("Generate Project Structure"):
    project_description = st.sidebar.text_area("Enter project description:")
    if project_description:
        project_structure = generate_project_structure(project_description)
        st.sidebar.subheader("Generated Project Structure")
        st.sidebar.code(project_structure)

# Add a feature to suggest relevant libraries and frameworks
def suggest_libraries(code):
    """Suggest relevant libraries and frameworks for the given code."""
    suggestions = generate_response(f"Suggest relevant libraries and frameworks for the following code:\n\n{code}")
    return suggestions

# Add this new function to the Streamlit UI
if task_type == "Code Generation":
    if st.sidebar.button("Suggest Libraries"):
        library_suggestions = suggest_libraries(optimized_code)
        st.sidebar.subheader("Suggested Libraries and Frameworks")
        st.sidebar.write(library_suggestions)

# Add a feature to generate code in multiple programming languages
def translate_code(code, target_language):
    """Translate the given code to the specified target language."""
    translated_code = generate_response(f"Translate the following code to {target_language}:\n\n{code}")
    return translated_code

# Add this new function to the Streamlit UI
if task_type == "Code Generation":
    target_language = st.sidebar.selectbox("Select target language for translation", ["Python", "JavaScript", "Java", "C++", "Go"])
    if st.sidebar.button("Translate Code"):
        translated_code = translate_code(optimized_code, target_language)
        st.sidebar.subheader(f"Translated Code ({target_language})")
        st.sidebar.code(translated_code)

# Add a feature to generate a README file for the project
def generate_readme(project_description, code):
    """Generate a README file for the project based on the description and code."""
    readme_content = generate_response(f"Generate a README.md file for the following project:\n\nDescription: {project_description}\n\nCode:\n{code}")
    return readme_content

# Add this new function to the Streamlit UI
if task_type == "Code Generation":
    if st.sidebar.button("Generate README"):
        project_description = st.sidebar.text_area("Enter project description:")
        if project_description:
            readme_content = generate_readme(project_description, optimized_code)
            st.sidebar.subheader("Generated README.md")
            st.sidebar.markdown(readme_content)

# Add a feature to suggest code refactoring
def suggest_refactoring(code):
    """Suggest code refactoring improvements for the given code."""
    refactoring_suggestions = generate_response(f"Suggest code refactoring improvements for the following code:\n\n{code}")
    return refactoring_suggestions

# Add this new function to the Streamlit UI
if task_type == "Code Generation":
    if st.sidebar.button("Suggest Refactoring"):
        refactoring_suggestions = suggest_refactoring(optimized_code)
        st.sidebar.subheader("Refactoring Suggestions")
        st.sidebar.write(refactoring_suggestions)

# Add a feature to generate sample test data
def generate_test_data(code):
    """Generate sample test data for the given code."""
    test_data = generate_response(f"Generate sample test data for the following code:\n\n{code}")
    return test_data

# Add this new function to the Streamlit UI
if task_type == "Code Generation":
    if st.sidebar.button("Generate Test Data"):
        test_data = generate_test_data(optimized_code)
        st.sidebar.subheader("Generated Test Data")
        st.sidebar.code(test_data)

# Main execution
if __name__ == "__main__":
    st.sidebar.header("About")
    st.sidebar.info("This Ultra AI Code Assistant is powered by advanced AI models and incorporates expertise across multiple domains including software development, machine learning, data analysis, and more.")
    
    st.sidebar.header("Feedback")
    feedback = st.sidebar.text_area("Please provide any feedback or suggestions:")
    if st.sidebar.button("Submit Feedback"):
        # Here you would typically send this feedback to a database or email
        st.sidebar.success("Thank you for your feedback!")