|
import streamlit as st |
|
import google.generativeai as genai |
|
import requests |
|
import subprocess |
|
import os |
|
import pylint |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier |
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score |
|
import git |
|
import spacy |
|
from spacy.lang.en import English |
|
import boto3 |
|
import unittest |
|
import docker |
|
import sympy as sp |
|
from scipy.optimize import minimize, differential_evolution |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from IPython.display import display |
|
from tenacity import retry, stop_after_attempt, wait_fixed |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from transformers import AutoTokenizer, AutoModel |
|
import networkx as nx |
|
from sklearn.cluster import KMeans |
|
from scipy.stats import ttest_ind |
|
from statsmodels.tsa.arima.model import ARIMA |
|
import nltk |
|
from nltk.sentiment import SentimentIntensityAnalyzer |
|
import cv2 |
|
from PIL import Image |
|
import tensorflow as tf |
|
from tensorflow.keras.applications import ResNet50 |
|
from tensorflow.keras.preprocessing import image |
|
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions |
|
|
|
# Configure the Gemini API |
|
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) |
|
|
|
# Create the model with optimized parameters and enhanced system instructions |
|
generation_config = { |
|
"temperature": 0.4, |
|
"top_p": 0.8, |
|
"top_k": 50, |
|
"max_output_tokens": 4096, |
|
} |
|
|
|
model = genai.GenerativeModel( |
|
model_name="gemini-1.5-pro", |
|
generation_config=generation_config, |
|
system_instruction=""" |
|
You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains including machine learning, data science, web development, cloud computing, and more. Your responses should showcase cutting-edge techniques, best practices, and innovative solutions. |
|
""" |
|
) |
|
chat_session = model.start_chat(history=[]) |
|
|
|
@retry(stop=stop_after_attempt(5), wait=wait_fixed(2)) |
|
def generate_response(user_input): |
|
try: |
|
response = chat_session.send_message(user_input) |
|
return response.text |
|
except Exception as e: |
|
return f"Error: {e}" |
|
|
|
def optimize_code(code): |
|
with open("temp_code.py", "w") as file: |
|
file.write(code) |
|
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True) |
|
os.remove("temp_code.py") |
|
return code |
|
|
|
def fetch_from_github(query): |
|
# Implement GitHub API interaction here |
|
pass |
|
|
|
def interact_with_api(api_url): |
|
response = requests.get(api_url) |
|
return response.json() |
|
|
|
def train_advanced_ml_model(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) |
|
models = { |
|
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42), |
|
'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42) |
|
} |
|
results = {} |
|
for name, model in models.items(): |
|
model.fit(X_train, y_train) |
|
y_pred = model.predict(X_test) |
|
results[name] = { |
|
'accuracy': accuracy_score(y_test, y_pred), |
|
'precision': precision_score(y_test, y_pred, average='weighted'), |
|
'recall': recall_score(y_test, y_pred, average='weighted'), |
|
'f1': f1_score(y_test, y_pred, average='weighted') |
|
} |
|
return results |
|
|
|
def handle_error(error): |
|
st.error(f"An error occurred: {error}") |
|
# Implement advanced error logging and notification system here |
|
|
|
def initialize_git_repo(repo_path): |
|
if not os.path.exists(repo_path): |
|
os.makedirs(repo_path) |
|
if not os.path.exists(os.path.join(repo_path, '.git')): |
|
repo = git.Repo.init(repo_path) |
|
else: |
|
repo = git.Repo(repo_path) |
|
return repo |
|
|
|
def integrate_with_git(repo_path, code): |
|
repo = initialize_git_repo(repo_path) |
|
with open(os.path.join(repo_path, "generated_code.py"), "w") as file: |
|
file.write(code) |
|
repo.index.add(["generated_code.py"]) |
|
repo.index.commit("Added generated code") |
|
|
|
def process_user_input(user_input): |
|
nlp = spacy.load("en_core_web_sm") |
|
doc = nlp(user_input) |
|
return doc |
|
|
|
def interact_with_cloud_services(service_name, action, params): |
|
client = boto3.client(service_name) |
|
response = getattr(client, action)(**params) |
|
return response |
|
|
|
def run_tests(): |
|
tests_dir = os.path.join(os.getcwd(), 'tests') |
|
if not os.path.exists(tests_dir): |
|
os.makedirs(tests_dir) |
|
init_file = os.path.join(tests_dir, '__init__.py') |
|
if not os.path.exists(init_file): |
|
with open(init_file, 'w') as f: |
|
f.write('') |
|
|
|
test_suite = unittest.TestLoader().discover(tests_dir) |
|
test_runner = unittest.TextTestRunner() |
|
test_result = test_runner.run(test_suite) |
|
return test_result |
|
|
|
def execute_code_in_docker(code): |
|
client = docker.from_env() |
|
try: |
|
container = client.containers.run( |
|
image="python:3.9", |
|
command=f"python -c '{code}'", |
|
detach=True, |
|
remove=True |
|
) |
|
result = container.wait() |
|
logs = container.logs().decode('utf-8') |
|
return logs, result['StatusCode'] |
|
except Exception as e: |
|
return f"Error: {e}", 1 |
|
|
|
def solve_complex_equation(equation): |
|
x, y, z = sp.symbols('x y z') |
|
eq = sp.Eq(eval(equation)) |
|
solution = sp.solve(eq) |
|
return solution |
|
|
|
def advanced_optimization(function, bounds): |
|
result = differential_evolution(lambda x: eval(function), bounds) |
|
return result.x, result.fun |
|
|
|
def visualize_complex_data(data): |
|
df = pd.DataFrame(data) |
|
fig, axs = plt.subplots(2, 2, figsize=(16, 12)) |
|
|
|
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', ax=axs[0, 0]) |
|
axs[0, 0].set_title('Correlation Heatmap') |
|
|
|
sns.pairplot(df, diag_kind='kde', ax=axs[0, 1]) |
|
axs[0, 1].set_title('Pairplot') |
|
|
|
df.plot(kind='box', ax=axs[1, 0]) |
|
axs[1, 0].set_title('Box Plot') |
|
|
|
sns.violinplot(data=df, ax=axs[1, 1]) |
|
axs[1, 1].set_title('Violin Plot') |
|
|
|
plt.tight_layout() |
|
return fig |
|
|
|
def analyze_complex_data(data): |
|
df = pd.DataFrame(data) |
|
summary = df.describe() |
|
correlation = df.corr() |
|
skewness = df.skew() |
|
kurtosis = df.kurtosis() |
|
return { |
|
'summary': summary, |
|
'correlation': correlation, |
|
'skewness': skewness, |
|
'kurtosis': kurtosis |
|
} |
|
|
|
def train_deep_learning_model(X, y): |
|
class DeepNN(nn.Module): |
|
def __init__(self, input_size): |
|
super(DeepNN, self).__init__() |
|
self.fc1 = nn.Linear(input_size, 64) |
|
self.fc2 = nn.Linear(64, 32) |
|
self.fc3 = nn.Linear(32, 1) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
x = torch.sigmoid(self.fc3(x)) |
|
return x |
|
|
|
X_tensor = torch.FloatTensor(X.values) |
|
y_tensor = torch.FloatTensor(y.values) |
|
|
|
model = DeepNN(X.shape[1]) |
|
criterion = nn.BCELoss() |
|
optimizer = optim.Adam(model.parameters()) |
|
|
|
epochs = 100 |
|
for epoch in range(epochs): |
|
optimizer.zero_grad() |
|
outputs = model(X_tensor) |
|
loss = criterion(outputs, y_tensor.unsqueeze(1)) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
return model |
|
|
|
def perform_nlp_analysis(text): |
|
nlp = spacy.load("en_core_web_sm") |
|
doc = nlp(text) |
|
|
|
entities = [(ent.text, ent.label_) for ent in doc.ents] |
|
tokens = [token.text for token in doc] |
|
pos_tags = [(token.text, token.pos_) for token in doc] |
|
|
|
sia = SentimentIntensityAnalyzer() |
|
sentiment = sia.polarity_scores(text) |
|
|
|
return { |
|
'entities': entities, |
|
'tokens': tokens, |
|
'pos_tags': pos_tags, |
|
'sentiment': sentiment |
|
} |
|
|
|
def perform_image_analysis(image_path): |
|
img = cv2.imread(image_path) |
|
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
# Perform object detection |
|
model = ResNet50(weights='imagenet') |
|
img_resized = cv2.resize(img_rgb, (224, 224)) |
|
img_array = image.img_to_array(img_resized) |
|
img_array = np.expand_dims(img_array, axis=0) |
|
img_array = preprocess_input(img_array) |
|
|
|
predictions = model.predict(img_array) |
|
decoded_predictions = decode_predictions(predictions, top=3)[0] |
|
|
|
# Perform edge detection |
|
edges = cv2.Canny(img, 100, 200) |
|
|
|
return { |
|
'predictions': decoded_predictions, |
|
'edges': edges |
|
} |
|
|
|
def perform_time_series_analysis(data): |
|
df = pd.DataFrame(data) |
|
model = ARIMA(df, order=(1, 1, 1)) |
|
results = model.fit() |
|
forecast = results.forecast(steps=5) |
|
return { |
|
'model_summary': results.summary(), |
|
'forecast': forecast |
|
} |
|
|
|
def perform_graph_analysis(nodes, edges): |
|
G = nx.Graph() |
|
G.add_nodes_from(nodes) |
|
G.add_edges_from(edges) |
|
|
|
centrality = nx.degree_centrality(G) |
|
clustering = nx.clustering(G) |
|
shortest_paths = dict(nx.all_pairs_shortest_path_length(G)) |
|
|
|
return { |
|
'centrality': centrality, |
|
'clustering': clustering, |
|
'shortest_paths': shortest_paths |
|
} |
|
|
|
# Streamlit UI setup |
|
st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="π", layout="wide") |
|
|
|
# ... (Keep the existing CSS styles) |
|
|
|
st.markdown('<div class="main-container">', unsafe_allow_html=True) |
|
st.title("π Ultra AI Code Assistant") |
|
st.markdown('<p class="subtitle">Powered by Advanced AI and Domain Expertise</p>', unsafe_allow_html=True) |
|
|
|
task_type = st.selectbox("Select Task Type", [ |
|
"Code Generation", |
|
"Machine Learning", |
|
"Data Analysis", |
|
"Natural Language Processing", |
|
"Image Analysis", |
|
"Time Series Analysis", |
|
"Graph Analysis" |
|
]) |
|
|
|
prompt = st.text_area("Enter your task description or code:", height=120) |
|
|
|
if st.button("Execute Task"): |
|
if prompt.strip() == "": |
|
st.error("Please enter a valid prompt.") |
|
else: |
|
with st.spinner("Processing your request..."): |
|
try: |
|
if task_type == "Code Generation": |
|
processed_input = process_user_input(prompt) |
|
completed_text = generate_response(processed_input.text) |
|
if "Error" in completed_text: |
|
handle_error(completed_text) |
|
else: |
|
optimized_code = optimize_code(completed_text) |
|
st.success("Code generated and optimized successfully!") |
|
|
|
st.markdown('<div class="output-container">', unsafe_allow_html=True) |
|
st.markdown('<div class="code-block">', unsafe_allow_html=True) |
|
st.code(optimized_code) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
repo_path = "./repo" |
|
integrate_with_git(repo_path, optimized_code) |
|
|
|
test_result = run_tests() |
|
if test_result.wasSuccessful(): |
|
st.success("All tests passed successfully!") |
|
else: |
|
st.error("Some tests failed. Please check the code.") |
|
|
|
execution_result, status_code = execute_code_in_docker(optimized_code) |
|
if status_code == 0: |
|
st.success("Code executed successfully in Docker!") |
|
st.text(execution_result) |
|
else: |
|
st.error(f"Code execution failed: {execution_result}") |
|
|
|
elif task_type == "Machine Learning": |
|
# For demonstration, we'll use a sample dataset |
|
from sklearn.datasets import make_classification |
|
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42) |
|
results = train_advanced_ml_model(X, y) |
|
st.write("Machine Learning Model Performance:") |
|
st.json(results) |
|
|
|
st.write("Deep Learning Model:") |
|
deep_model = train_deep_learning_model(pd.DataFrame(X), pd.Series(y)) |
|
st.write(deep_model) |
|
|
|
elif task_type == "Data Analysis": |
|
# For demonstration, we'll use a sample dataset |
|
data = pd.DataFrame(np.random.randn(100, 5), columns=['A', 'B', 'C', 'D', 'E']) |
|
analysis_results = analyze_complex_data(data) |
|
st.write("Data Analysis Results:") |
|
st.write(analysis_results['summary']) |
|
st.write("Correlation Matrix:") |
|
st.write(analysis_results['correlation']) |
|
|
|
fig = visualize_complex_data(data) |
|
st.pyplot(fig) |
|
|
|
elif task_type == "Natural Language Processing": |
|
nlp_results = perform_nlp_analysis(prompt) |
|
st.write("NLP Analysis Results:") |
|
st.json(nlp_results) |
|
elif task_type == "Image Analysis": |
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) |
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file) |
|
st.image(image, caption='Uploaded Image', use_column_width=True) |
|
|
|
# Save the uploaded image temporarily |
|
with open("temp_image.jpg", "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
|
|
analysis_results = perform_image_analysis("temp_image.jpg") |
|
|
|
st.write("Image Analysis Results:") |
|
st.write("Top 3 predictions:") |
|
for i, (imagenet_id, label, score) in enumerate(analysis_results['predictions']): |
|
st.write(f"{i + 1}: {label} ({score:.2f})") |
|
|
|
st.write("Edge Detection:") |
|
st.image(analysis_results['edges'], caption='Edge Detection', use_column_width=True) |
|
|
|
# Remove the temporary image file |
|
os.remove("temp_image.jpg") |
|
|
|
elif task_type == "Time Series Analysis": |
|
# For demonstration, we'll use a sample time series dataset |
|
dates = pd.date_range(start='1/1/2020', end='1/1/2021', freq='D') |
|
values = np.random.randn(len(dates)).cumsum() |
|
ts_data = pd.Series(values, index=dates) |
|
|
|
st.line_chart(ts_data) |
|
|
|
analysis_results = perform_time_series_analysis(ts_data) |
|
st.write("Time Series Analysis Results:") |
|
st.write(analysis_results['model_summary']) |
|
st.write("Forecast for the next 5 periods:") |
|
st.write(analysis_results['forecast']) |
|
|
|
elif task_type == "Graph Analysis": |
|
# For demonstration, we'll use a sample graph |
|
nodes = range(1, 11) |
|
edges = [(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (5, 9), (6, 10)] |
|
|
|
analysis_results = perform_graph_analysis(nodes, edges) |
|
st.write("Graph Analysis Results:") |
|
st.write("Centrality:") |
|
st.json(analysis_results['centrality']) |
|
st.write("Clustering Coefficient:") |
|
st.json(analysis_results['clustering']) |
|
|
|
# Visualize the graph |
|
G = nx.Graph() |
|
G.add_nodes_from(nodes) |
|
G.add_edges_from(edges) |
|
fig, ax = plt.subplots(figsize=(10, 8)) |
|
nx.draw(G, with_labels=True, node_color='lightblue', node_size=500, font_size=16, font_weight='bold', ax=ax) |
|
st.pyplot(fig) |
|
|
|
except Exception as e: |
|
handle_error(e) |
|
|
|
st.markdown(""" |
|
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'> |
|
Created with β€οΈ by Your Ultra AI Code Assistant |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
# Additional helper functions |
|
|
|
def explain_code(code): |
|
"""Generate an explanation for the given code using NLP techniques.""" |
|
explanation = generate_response(f"Explain the following code:\n\n{code}") |
|
return explanation |
|
|
|
def generate_unit_tests(code): |
|
"""Generate unit tests for the given code.""" |
|
unit_tests = generate_response(f"Generate unit tests for the following code:\n\n{code}") |
|
return unit_tests |
|
|
|
def suggest_optimizations(code): |
|
"""Suggest optimizations for the given code.""" |
|
optimizations = generate_response(f"Suggest optimizations for the following code:\n\n{code}") |
|
return optimizations |
|
|
|
def generate_documentation(code): |
|
"""Generate documentation for the given code.""" |
|
documentation = generate_response(f"Generate documentation for the following code:\n\n{code}") |
|
return documentation |
|
|
|
# Add these new functions to the Streamlit UI |
|
if task_type == "Code Generation": |
|
st.sidebar.header("Code Analysis Tools") |
|
if st.sidebar.button("Explain Code"): |
|
explanation = explain_code(optimized_code) |
|
st.sidebar.subheader("Code Explanation") |
|
st.sidebar.write(explanation) |
|
|
|
if st.sidebar.button("Generate Unit Tests"): |
|
unit_tests = generate_unit_tests(optimized_code) |
|
st.sidebar.subheader("Generated Unit Tests") |
|
st.sidebar.code(unit_tests) |
|
|
|
if st.sidebar.button("Suggest Optimizations"): |
|
optimizations = suggest_optimizations(optimized_code) |
|
st.sidebar.subheader("Suggested Optimizations") |
|
st.sidebar.write(optimizations) |
|
|
|
if st.sidebar.button("Generate Documentation"): |
|
documentation = generate_documentation(optimized_code) |
|
st.sidebar.subheader("Generated Documentation") |
|
st.sidebar.write(documentation) |
|
|
|
# Add more advanced features |
|
def perform_security_analysis(code): |
|
"""Perform a basic security analysis on the given code.""" |
|
security_analysis = generate_response(f"Perform a security analysis on the following code and suggest improvements:\n\n{code}") |
|
return security_analysis |
|
|
|
def generate_api_documentation(code): |
|
"""Generate API documentation for the given code.""" |
|
api_docs = generate_response(f"Generate API documentation for the following code:\n\n{code}") |
|
return api_docs |
|
|
|
def suggest_design_patterns(code): |
|
"""Suggest appropriate design patterns for the given code.""" |
|
design_patterns = generate_response(f"Suggest appropriate design patterns for the following code:\n\n{code}") |
|
return design_patterns |
|
|
|
# Add these new functions to the Streamlit UI |
|
if task_type == "Code Generation": |
|
st.sidebar.header("Advanced Code Analysis") |
|
if st.sidebar.button("Security Analysis"): |
|
security_analysis = perform_security_analysis(optimized_code) |
|
st.sidebar.subheader("Security Analysis") |
|
st.sidebar.write(security_analysis) |
|
|
|
if st.sidebar.button("Generate API Documentation"): |
|
api_docs = generate_api_documentation(optimized_code) |
|
st.sidebar.subheader("API Documentation") |
|
st.sidebar.write(api_docs) |
|
|
|
if st.sidebar.button("Suggest Design Patterns"): |
|
design_patterns = suggest_design_patterns(optimized_code) |
|
st.sidebar.subheader("Suggested Design Patterns") |
|
st.sidebar.write(design_patterns) |
|
|
|
# Add a feature to generate a complete project structure |
|
def generate_project_structure(project_description): |
|
"""Generate a complete project structure based on the given description.""" |
|
project_structure = generate_response(f"Generate a complete project structure for the following project description:\n\n{project_description}") |
|
return project_structure |
|
|
|
# Add this new function to the Streamlit UI |
|
if st.sidebar.button("Generate Project Structure"): |
|
project_description = st.sidebar.text_area("Enter project description:") |
|
if project_description: |
|
project_structure = generate_project_structure(project_description) |
|
st.sidebar.subheader("Generated Project Structure") |
|
st.sidebar.code(project_structure) |
|
|
|
# Add a feature to suggest relevant libraries and frameworks |
|
def suggest_libraries(code): |
|
"""Suggest relevant libraries and frameworks for the given code.""" |
|
suggestions = generate_response(f"Suggest relevant libraries and frameworks for the following code:\n\n{code}") |
|
return suggestions |
|
|
|
# Add this new function to the Streamlit UI |
|
if task_type == "Code Generation": |
|
if st.sidebar.button("Suggest Libraries"): |
|
library_suggestions = suggest_libraries(optimized_code) |
|
st.sidebar.subheader("Suggested Libraries and Frameworks") |
|
st.sidebar.write(library_suggestions) |
|
|
|
# Add a feature to generate code in multiple programming languages |
|
def translate_code(code, target_language): |
|
"""Translate the given code to the specified target language.""" |
|
translated_code = generate_response(f"Translate the following code to {target_language}:\n\n{code}") |
|
return translated_code |
|
|
|
# Add this new function to the Streamlit UI |
|
if task_type == "Code Generation": |
|
target_language = st.sidebar.selectbox("Select target language for translation", ["Python", "JavaScript", "Java", "C++", "Go"]) |
|
if st.sidebar.button("Translate Code"): |
|
translated_code = translate_code(optimized_code, target_language) |
|
st.sidebar.subheader(f"Translated Code ({target_language})") |
|
st.sidebar.code(translated_code) |
|
|
|
# Add a feature to generate a README file for the project |
|
def generate_readme(project_description, code): |
|
"""Generate a README file for the project based on the description and code.""" |
|
readme_content = generate_response(f"Generate a README.md file for the following project:\n\nDescription: {project_description}\n\nCode:\n{code}") |
|
return readme_content |
|
|
|
# Add this new function to the Streamlit UI |
|
if task_type == "Code Generation": |
|
if st.sidebar.button("Generate README"): |
|
project_description = st.sidebar.text_area("Enter project description:") |
|
if project_description: |
|
readme_content = generate_readme(project_description, optimized_code) |
|
st.sidebar.subheader("Generated README.md") |
|
st.sidebar.markdown(readme_content) |
|
|
|
# Add a feature to suggest code refactoring |
|
def suggest_refactoring(code): |
|
"""Suggest code refactoring improvements for the given code.""" |
|
refactoring_suggestions = generate_response(f"Suggest code refactoring improvements for the following code:\n\n{code}") |
|
return refactoring_suggestions |
|
|
|
# Add this new function to the Streamlit UI |
|
if task_type == "Code Generation": |
|
if st.sidebar.button("Suggest Refactoring"): |
|
refactoring_suggestions = suggest_refactoring(optimized_code) |
|
st.sidebar.subheader("Refactoring Suggestions") |
|
st.sidebar.write(refactoring_suggestions) |
|
|
|
# Add a feature to generate sample test data |
|
def generate_test_data(code): |
|
"""Generate sample test data for the given code.""" |
|
test_data = generate_response(f"Generate sample test data for the following code:\n\n{code}") |
|
return test_data |
|
|
|
# Add this new function to the Streamlit UI |
|
if task_type == "Code Generation": |
|
if st.sidebar.button("Generate Test Data"): |
|
test_data = generate_test_data(optimized_code) |
|
st.sidebar.subheader("Generated Test Data") |
|
st.sidebar.code(test_data) |
|
|
|
# Main execution |
|
if __name__ == "__main__": |
|
st.sidebar.header("About") |
|
st.sidebar.info("This Ultra AI Code Assistant is powered by advanced AI models and incorporates expertise across multiple domains including software development, machine learning, data analysis, and more.") |
|
|
|
st.sidebar.header("Feedback") |
|
feedback = st.sidebar.text_area("Please provide any feedback or suggestions:") |
|
if st.sidebar.button("Submit Feedback"): |
|
# Here you would typically send this feedback to a database or email |
|
st.sidebar.success("Thank you for your feedback!") |