Spaces:
Running
Running
File size: 15,222 Bytes
9cee6a8 863cc12 9cee6a8 863cc12 e5162e3 9f8f8be 863cc12 9cee6a8 03e933b 1005bd7 863cc12 9cee6a8 863cc12 19a7a66 9cee6a8 863cc12 b2afae5 fa77c71 b2afae5 fa77c71 b2afae5 863cc12 b2afae5 863cc12 d16eece b3fa751 d16eece cfc543f d16eece 3ef41e0 d16eece 3ef41e0 d16eece 863cc12 3ef41e0 863cc12 19a7a66 9cee6a8 863cc12 6d5c8c7 19a7a66 6d5c8c7 9f8f8be e5162e3 9f8f8be 863cc12 e5162e3 863cc12 6d5c8c7 9f8f8be 6d5c8c7 9f8f8be 863cc12 3ef41e0 b22b5ab 3ef41e0 b22b5ab cfc543f 15cce89 1cd1646 3ef41e0 15cce89 a05d5f1 863cc12 15cce89 cfc543f 15cce89 3ef41e0 9cee6a8 15cce89 863cc12 823f064 3ef41e0 f21167e b3fa751 3ef41e0 b22b5ab 19a7a66 5c62089 638952b cfc543f 638952b 3ef41e0 638952b d53f6bc 863cc12 1cd1646 863cc12 638952b b2afae5 3ef41e0 638952b 1cd1646 873769e 1cd1646 d16eece cfc543f ca70f03 6d5c8c7 873769e 863cc12 19a7a66 f9affc4 679d19d 19a7a66 03e933b a7135a3 19a7a66 a7135a3 19a7a66 a7135a3 19a7a66 863cc12 9cee6a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import asyncio
import aiohttp
import json
import torch
import re
import nest_asyncio
nest_asyncio.apply()
repo_name = "BeardedMonster/SabiYarn-125M"
device = "cuda" if torch.cuda.is_available() else "cpu"
@st.cache_resource(show_spinner=False)
def load_model():
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True).to(device)
return tokenizer, model
tokenizer, model = load_model()
# Add sidebar with instructions
st.sidebar.title("Instructions: How to use")
# st.sidebar.write("""
# 1. Write something in the text area (a prompt or random text) or use the dropdown menu to select predefined sample text.
# 2. Select a task from the **task dropdown menu** below only if you are providing your own text. **This is very important as it ensures the model responds accordingly.**
# 3. If you are providing your own text, please do not select any predefined sample text from the dropdown menu.
# 3. If a dropdown menu pops up for a nigerian language, **select the nigerian language (it represents a base language for diacritization and text cleaning tasks & target language for translation task).**
# 4. Then, click the Generate button.\n
# 5. For Translation tasks, setting english as the target language yields the best result (english as base language performs the worse).
# **Note: Model's overall performance vary (hallucinates) due to model size and training data distribution. Performance may worsen with other task outside text generation and translation.
# For other tasks, we suggest you try them several times due to the generator's sampling parameter settings.**\n
# 6. Lastly, you can play with some of the generation parameters below to improve performance.
# """)
st.sidebar.write("""
1. **Write Text or Select Sample:**
- Enter text in the text area or use the dropdown to choose a sample.
2. **Select a Task:**
- Choose a task from the **task dropdown** if using your own text.
- **Important:** This ensures correct model response.
3. **Avoid Conflicts:**
- Don't select a sample text if using your own text.
4. **Select Nigerian Language:**
- If prompted, choose the Nigerian language (base for diacritization/cleaning, target for translation).
5. **Generate Output:**
- Click the Generate button.
6. **Translation Tips:**
- English as the target language gives the best results. English as the base language performs poorly.
7. **Performance Note:**
- The model's performance varies due to its size and training data. It performs best on text generation and translation.
- For other tasks, try multiple times due to sampling.
8. **Adjust Parameters:**
- Experiment with the generation parameters to improve performance.
""")
max_length = 100
max_new_tokens = 50
num_beams = 5
temperature = 0.99
top_k = 50
top_p = 0.95
repetition_penalty = 4.0
length_penalty = 3.0
# Create sliders in the sidebar
max_length = st.sidebar.slider("Max. output length", min_value=10, max_value=500, value=max_length)
max_new_tokens = st.sidebar.slider("Max. generated tokens", min_value=30, max_value=768, value=max_new_tokens)
num_beams = st.sidebar.slider("Number of Beams: Improves coherence of the model output.", min_value=1, max_value=10, value=num_beams)
temperature = st.sidebar.slider("Temperature: Controls the creativity of the model", min_value=0.1, max_value=2.0, value=temperature)
top_k = st.sidebar.slider("Top-K: Controls model's sampling space.", min_value=1, max_value=100, value=top_k)
top_p = st.sidebar.slider("Top-P", min_value=0.1, max_value=1.0, value=top_p)
repetition_penalty = st.sidebar.slider("Repetition Penalty: Discourages token repitition during generation.", min_value=1.0, max_value=10.0, value=repetition_penalty)
length_penalty = st.sidebar.slider("Length Penalty: Discourages poor output as token length grows.", min_value=0.1, max_value=10.0, value=length_penalty)
generation_config = {
"max_length": max_length,
"num_beams": num_beams,
"do_sample": True,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"length_penalty": length_penalty,
"early_stopping": True
}
# Streamlit app
st.title("SabiYarn-125M : Generates text in multiple Nigerian languages.")
st.write("**Supported Languages: English, Yoruba, Igbo, Hausa, Pidgin, Efik, Urhobo, Fulfulde, Fulah. \nResults might not be coherent for less represented languages (i.e Efik, \
Urhobo, Fulfulde, Fulah).**")
st.write("**It might take a while (~25s) to return an output on the first 'generate' click.**")
st.write("**For convenience, you can use chatgpt to copy text and evaluate model output.**")
st.write("-" * 50)
async def generate_from_api(user_input, generation_config):
urls = [
"https://pauljeffrey--sabiyarn-fastapi-app.modal.run/predict",
"https://daveokpare--sabiyarn-fastapi-app.modal.run/predict",
"https://damilojohn--sabiyarn-fastapi-app.modal.run/predict"
]
payload = {
"prompt": user_input,
"config": generation_config
}
headers = {
'Content-Type': 'application/json'
}
async with aiohttp.ClientSession() as session:
for url in urls:
try:
async with session.post(url, headers=headers, json=payload) as response:
if response.status == 200:
return await response.text()
else:
print(f"Failed to fetch from {url} with status code {response.status}")
except Exception as e:
print(f"Error fetching from {url}: {e}")
return "FAILED"
# Sample texts
sample_texts = {
"select":"",
"Hausa: Afirka tana da al'adu...": "Afirka tana da al'adu da harsuna masu yawa. Tana da albarkatu da wuraren yawon shakatawa masu ban mamaki.",
"Yoruba: Ìmọ̀ sáyẹ́nsì àti...": "Ìmọ̀ sáyẹ́nsì àti tẹ̀knọ́lójì ń ṣe émi lóore tó níye lori ní Áfíríkà. Ó ń fún àwọn ènìyàn ní ànfààní láti dá irọyin àti kí wọ́n lè ṣe àwọn nǹkan tuntun.",
"Efik: Oma Ede, Mi ji ogede...": "Oma Ede, Mi ji ogede mi a foroma orhorho edha meji ri eka. ",
"Igbo: N'ala Igbo ...": "N'ala Igbo, ọtụtụ ndị mmadụ kwenyere na e nwere mmiri ara na elu-ilu",
"urhobo: Eshare nana ri...":"Eshare nana ri vwo ẹguọnọ rẹ iyono rẹ Aristotle vẹ Plato na",
"Efik: Ke eyo ...":"Ke eyo Jesus ye mme mbet esie, etop emi ama ada ifụre ọsọk mme Jew oro esịt okobụn̄ọde ke ntak idiọkido ke Israel, oro ẹkenyụn̄ ẹdude ke mfụhọ ke itie-ufụn mme nsunsu ido edinam Ido Ukpono Mme Jew eke akpa isua ikie.",
"Tell me a story in pidgin": "Tell me a story Pidgin",
"who are you?": "who are you?",
"Speak Yoruba": "Speak Yoruba",
"Translate 'Often, all Yoruba children...' to Yoruba": "Often, all Yoruba children take pride in speaking the Yoruba language.",
"Classify the sentiment": "Anyi na-echefu oke ike.",
"what is the topic of this text": "Africa Free Trade Zone: Kò sí ìdènà láti kó ọjà láti orílẹ̀èdè kan sí òmíràn",
"diacritize this text: ": "E sun, Alaga, fun ise amalayi ti e n se ni Naijiria. E maa ba a lo, egbon!",
"clean this text": "Abin mamaki ne aikin da shugabaZn HNajeriya ybake yi. kCiF 39gaba Tda haRkGa sir!",
"headline of this text": '** Sylvain Itté French ambassador don comot Niger Republic **. Sylvain Itté, di French ambassador for Niger don comot Niamey and currently e dey for flight from Ndjamena to Paris. Sylvain Itté, di French ambassador for Niger don comot Niamey very early dis morning and currently e dey for flight from Ndjamena to Paris.\n\nDi military detain Bazoum and im family for di presidential palace. Niger na former French colony, and France still get 1,500 sojas for di African country.\n\n"France don decide to withdraw dia ambassador. In di next hours our ambassador and several diplomats go return to France," Oga Macron tok.\n\nE add say di military co-operation dey "over" and French troops go leave in "di months to come".\n\n"Dis Sunday we celebrate one new step towards di sovereignty of Niger," di junta tok, for one statement wey AFP news agency quote.\n\nDi decision by Paris dey come afta months of hostility and protest against di presence of French for di kontri, wit regular demonstrations for di capital Niamey.\n\nDi move don scata France operations against Islamist militants for di wider Sahel region and Paris influence for there. But oga Macron tok say "putschists no go hold France hostage,"'
}
instruction_wrap = {
"Translate 'Often, all Yoruba children...' to Yoruba":"<translate> Often, all Yoruba children take pride in speaking the Yoruba language. <yor>",
"Tell me a story in pidgin": "<prompt> Tell me a story in pidgin <response>:",
"Translate 'how are you?' to Yoruba": "<prompt> Translate 'how are you?' to Yoruba <response>:",
"who are you?": "<prompt> who are you? <response>:",
"Speak Yoruba": "<prompt> Speak Yoruba <response>:",
"Classify the sentiment" : "<classify> Anyi na-echefu oke ike. <sentiment>",
"clean this text": "<clean> Abin mamaki ne aikin da shugabaZn HNajeriya ybake yi. kCiF 39gaba Tda haRkGa sir! <pcm>",
"diacritize this text: ": "<diacritize> E sun, Alaga, fun ise amalayi ti e n se ni Naijiria. E maa ba a lo, egbon! <yor>",
"what is the topic of this text": "<classify> Africa Free Trade Zone: Kò sí ìdènà láti kó ọjà láti orílẹ̀èdè kan sí òmíràn <topic>",
'headline of this text': '<title> ** Sylvain Itté French ambassador don comot Niger Republic **. Sylvain Itté, di French ambassador for Niger don comot Niamey and currently e dey for flight from Ndjamena to Paris. Sylvain Itté, di French ambassador for Niger don comot Niamey very early dis morning and currently e dey for flight from Ndjamena to Paris.\n\nDi military detain Bazoum and im family for di presidential palace. Niger na former French colony, and France still get 1,500 sojas for di African country.\n\n"France don decide to withdraw dia ambassador. In di next hours our ambassador and several diplomats go return to France," Oga Macron tok.\n\nE add say di military co-operation dey "over" and French troops go leave in "di months to come".\n\n"Dis Sunday we celebrate one new step towards di sovereignty of Niger," di junta tok, for one statement wey AFP news agency quote.\n\nDi decision by Paris dey come afta months of hostility and protest against di presence of French for di kontri, wit regular demonstrations for di capital Niamey.\n\nDi move don scata France operations against Islamist militants for di wider Sahel region and Paris influence for there. But oga Macron tok say "putschists no go hold France hostage," <headline>',
}
# Task options
task_options = {
"select": "{}",
"Text Generation": "{}",
"Translation": "<translate> {} ",
"Sentiment Classification": "<classify> {} <sentiment>:",
"Topic Classification": "<classify> {} <topic>",
"Instruction Following" : "<prompt> {} <response>:",
"Headline Generation": "<title> {} <headline>",
"Text Diacritization": "<diacritize> {} ",
"Text Cleaning": "<clean> {} "
}
# Language options for diacritize, translation and clean tasks
language_options = {
"select": "",
"Yoruba": "<yor>",
"Hausa": "<hau>",
"Ibo": "<ibo>",
"Pidgin": "<pcm>",
"English": "<eng>",
# "Efik": "<efi>",
# "Urhobo": "<urh>",
# "Fulah": "<ful>"
}
# Dropdown for sample text
sample_text = st.selectbox("Select a sample text to test the model:", list(sample_texts.keys()))
# Dropdown for tasks
task = st.selectbox("Select a task for the model:", list(task_options.keys()))
# Conditionally show language options dropdown for diacritize and clean tasks
if task in ["Text Diacritization", "Text Cleaning", "Translation"]:
language = st.selectbox("Select a Nigerian language:", list(language_options.keys()))
task_value = f"{task_options[task]} {language_options[language]}"
else:
task_value = task_options[task]
def wrap_text(text, task_value):
tasks = ["<classify>", "<prompt>", "<clean>", "<title>", "<diacritize>", "<translate>"]
if any(task in text for task in tasks):
return text
return task_value.format(text)
# Text input
user_input = st.text_area("Enter text below **(PLEASE, FIRST READ ALL INSTRUCTIONS IN THE SIDEBAR CAREFULLY FOR THE BEST EXPERIENCE)**: ", sample_texts[sample_text])
user_input = instruction_wrap.get(sample_texts.get(user_input, user_input), user_input)
print("Final user input: ", user_input)
if st.button("Generate"):
if user_input:
st.spinner("Please wait...")
# try:
st.write("**Generated Text Below:**")
wrapped_input = wrap_text(user_input, task_value)
print("wrapped_input: ", wrapped_input)
generation_config["max_new_tokens"]= min(max_new_tokens, 1024 - len(tokenizer.tokenize(wrapped_input)))
start_time = time.time()
generation_config["max_new_tokens"] = min(max_new_tokens, 1024 - len(tokenizer.tokenize(wrapped_input)))
generated_text = asyncio.run(generate_from_api(wrapped_input, generation_config))
if generated_text == "FAILED":
input_ids = tokenizer(wrapped_input, return_tensors="pt")["input_ids"].to(device)
output = model.generate(input_ids, **generation_config)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text = re.sub(r"\|(end_f_text|end_of_text|end_ofext|end_oftext)|:|`", " ", generated_text.split("|end_of_text|")[0])
if task == "Sentiment Classification":
if "negative" in generated_text.lower():
generated_text = "Negative"
elif "positive" in generated_text.lower():
generated_text = "Positive"
elif "neutral" in generated_text.lower():
generated_text = "Neutral"
elif task == "Topic Classification":
generated_text = generated_text.split(" ")[0][:20]
elif task == "Translation":
n_sentences = len(user_input.split("."))
generated_text = ".".join(generated_text.split(".")[: n_sentences])
full_output = st.empty()
output = ""
for next_token in tokenizer.tokenize(generated_text):
output += tokenizer.convert_tokens_to_string([next_token])
full_output.markdown(f"<div style='word-wrap: break-word;'>{output}</div>", unsafe_allow_html=True)
# full_output.text(output)
time.sleep(0.1)
end_time = time.time()
time_diff = end_time - start_time
st.write("Time taken: ", time_diff , "seconds.")
# except Exception as e:
# st.error(f"Error during text generation: {e}")
else:
st.write("Please enter some text to generate.") |