File size: 9,740 Bytes
978b355
71b8b5d
 
 
978b355
 
 
 
672c2bf
001c69d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b71af
4f93ba9
383e8f6
 
f6aa311
383e8f6
 
 
6c34a8c
 
383e8f6
 
6c34a8c
383e8f6
6c34a8c
f6aa311
 
978b355
d8f9e92
 
71b8b5d
d8f9e92
71b8b5d
d8f9e92
 
 
 
 
71b8b5d
 
978b355
 
4fe4bfa
 
978b355
 
 
 
 
 
 
 
 
 
6c34a8c
e1e2e01
71b8b5d
383e8f6
 
f6aa311
 
978b355
 
6c34a8c
20700c3
383e8f6
a2cda19
 
01ceba0
e1e2e01
a2cda19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f72bf07
a2cda19
9101eba
f72bf07
 
9101eba
f72bf07
a2cda19
46964fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2cda19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
from ultralytics import YOLO
import torch
import cv2
import numpy as np
from PIL import Image  
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
import os
from typing import Callable, List, Tuple, Optional
from sklearn.decomposition import NMF
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
import matplotlib.pyplot as plt
from pytorch_grad_cam.utils.image import show_factorization_on_image
import requests    
import yaml
import matplotlib.patches as patches



COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(detections, model):
    boxes, colors, names, classes = [], [], [], []
    for detection in detections.boxes:
        xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist())
        confidence = detection.conf.item()
        if confidence < 0.2:
            continue
        class_id = int(detection.cls.item())
        name = model.names[class_id]
        boxes.append((xmin, ymin, xmax, ymax))
        colors.append(COLORS[class_id])
        names.append(name)
        classes.append(class_id) 
    return boxes, colors, names, classes

def draw_detections(boxes, colors, names, classes, img):
    for box, color, name, cls in zip(boxes, colors, names, classes):
        xmin, ymin, xmax, ymax = box
        label = f"{cls}: {name}"  # Combine class ID and name
        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
        cv2.putText(
            img, label, (xmin, ymin - 5),
            cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
            lineType=cv2.LINE_AA
        )
    return img

def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
    cam = EigenCAM(model, target_layers)
    model_output = model(tensor)[0]  # Adjust based on output structure
    grayscale_cam = cam(tensor, targets=model_output)[0, :, :]
    img_float = np.float32(rgb_img) / 255
    cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
    renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
    for x1, y1, x2, y2 in boxes:
        renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
    renormalized_cam = scale_cam_image(renormalized_cam)
    renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)

    return cam_image, renormalized_cam_image

def xai_yolov8s(image):
    model = YOLO('yolov8s.pt')  # Ensure the model weights are available
    model.eval()
    results = model(image)
    detections = results[0]
    boxes, colors, names, classes = parse_detections(detections, model)
    detections_img = draw_detections(boxes, colors, names, classes, image.copy())
    img_float = np.float32(image) / 255
    transform = transforms.ToTensor()
    tensor = transform(img_float).unsqueeze(0)
    target_layers = [model.model.model[-2]]  # Adjust to YOLOv8 architecture
    cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes)
    rgb_img_float, batch_explanations, result = dff_nmf(image, target_lyr = -5, n_components = 8)
    
    final_image = np.hstack((image, detections_img, renormalized_cam_image))
    caption = "Results using YOLOv8"
    return Image.fromarray(final_image), caption, result


def dff_l(activations,  model,  n_components):
    batch_size, channels, h, w = activations.shape
    print('activation', activations.shape)
    target_layer_index = 4        
    reshaped_activations = activations.transpose((1, 0, 2, 3))
    reshaped_activations[np.isnan(reshaped_activations)] = 0
    reshaped_activations = reshaped_activations.reshape(
        reshaped_activations.shape[0], -1)
    offset = reshaped_activations.min(axis=-1)
    reshaped_activations = reshaped_activations - offset[:, None]
    model = NMF(n_components=n_components, init='random', random_state=0)
    W = model.fit_transform(reshaped_activations)
    H = model.components_
    concepts = W + offset[:, None]
    explanations = H.reshape(n_components, batch_size, h, w)
    explanations = explanations.transpose((1, 0, 2, 3))
    return concepts, explanations

class DeepFeatureFactorization:
    def __init__(self,
                 model: torch.nn.Module,
                 target_layer: torch.nn.Module,
                 reshape_transform: Callable = None,
                 computation_on_concepts=None
                 ):
        self.model = model
        self.computation_on_concepts = computation_on_concepts
        self.activations_and_grads = ActivationsAndGradients(
            self.model, [target_layer], reshape_transform)

    def __call__(self,
                 input_tensor: torch.Tensor,
                 model: torch.nn.Module,
                 n_components: int = 16):
        if isinstance(input_tensor, np.ndarray):
            input_tensor = torch.from_numpy(input_tensor) 

        batch_size, channels, h, w = input_tensor.size()
        _ = self.activations_and_grads(input_tensor)

        with torch.no_grad():
            activations = self.activations_and_grads.activations[0].cpu(
            ).numpy()

        concepts, explanations = dff_l(activations, model,  n_components=n_components)
        processed_explanations = []

        for batch in explanations:
            processed_explanations.append(scale_cam_image(batch, (w, h)))

        if self.computation_on_concepts:
            with torch.no_grad():
                concept_tensors = torch.from_numpy(
                    np.float32(concepts).transpose((1, 0)))
                concept_outputs = self.computation_on_concepts(
                    concept_tensors).cpu().numpy()
            return concepts, processed_explanations, concept_outputs
        else:
            return concepts, processed_explanations,  explanations

    def __del__(self):
        self.activations_and_grads.release()

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.activations_and_grads.release()
        if isinstance(exc_value, IndexError):
            # Handle IndexError here...
            print(
                f"An exception occurred in ActivationSummary with block: {exc_type}. Message: {exc_value}")
            return True

def dff_nmf(image, target_lyr, n_components):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    mean = [0.485, 0.456, 0.406]  # Mean for RGB channels
    std = [0.229, 0.224, 0.225]   # Standard deviation for RGB channels
    img = cv2.resize(image, (640, 640))
    rgb_img_float = np.float32(img) / 255.0
    input_tensor = torch.from_numpy(rgb_img_float).permute(2, 0, 1).unsqueeze(0).to(device)

    model = YOLO('yolov8s.pt')  # Ensure the model is loaded correctly
    dff = DeepFeatureFactorization(model=model,
                                   target_layer=model.model.model[int(target_lyr)],
                                   computation_on_concepts=None)

    concepts, batch_explanations, explanations = dff(input_tensor, model, n_components)
    results = []
    for indx in range(explanations[0].shape[0]):
        upsampled_input =  explanations[0][indx]
        upsampled_input = torch.tensor(upsampled_input)
        device = next(model.parameters()).device
        input_tensor = upsampled_input.unsqueeze(0)
        input_tensor = input_tensor.unsqueeze(1).repeat(1, 128, 1, 1)   
        fig, ax = plt.subplots(1, figsize=(8, 8))
        ax.axis("off")
        ax.imshow(torch.tensor(batch_explanations[0][indx]).cpu().numpy(), cmap="plasma")  # Display i
        plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
        fig.canvas.draw()  # Draw the canvas to make sure the image is rendered
        image_array = np.array(fig.canvas.renderer.buffer_rgba())  # Convert to numpy array
        print("____________image_arrya", image_array.shape)
        image_resized = cv2.resize(image_array, (640, 640))
        rgba_channels = cv2.split(image_resized)
        alpha_channel = rgba_channels[3] 
        rgb_channels = np.stack(rgba_channels[:3], axis=-1)
        #overlay_img = (alpha_channel[..., None] * image) + ((1 - alpha_channel[..., None]) * rgb_channels)
        
        #temp = image_array.reshape((rgb_img_float.shape[0],rgb_img_float.shape[1]) )
        #visualization = show_factorization_on_image(rgb_img_float, image_array.resize((rgb_img_float.shape)) , image_weight=0.3)
        visualization = show_factorization_on_image(rgb_img_float, np.transpose(rgb_channels, (2, 0, 1)), image_weight=0.3)
        results.append(visualization)
        plt.clf()  
        
    return rgb_img_float, batch_explanations, results


def visualize_batch_explanations(rgb_img_float, batch_explanations, image_weight=0.7):
    for i, explanation in enumerate(batch_explanations):
        # Create visualization for each explanation
        print("visualization concepts",rgb_img_float.shape,explanation.shape  )
        visualization = show_factorization_on_image(rgb_img_float, explanation, image_weight=image_weight)
        plt.figure()
        plt.imshow(visualization)  # Correctly pass the visualization data
        plt.title(f'Explanation {i + 1}')  # Set the title for each plot
        plt.axis('off')  # Hide axes
        plt.show()  # Show the plot
    plt.savefig("test_w.png")
    print('viz', visualization.shape)
    return visualization