Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BertTokenizer, BertForMaskedLM | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn.manifold import TSNE | |
# Load a pre-trained model and tokenizer | |
model_name = 'bert-base-uncased' | |
tokenizer = BertTokenizer.from_pretrained(model_name) | |
model = BertForMaskedLM.from_pretrained(model_name) | |
# Example input text | |
text = "The quick brown fox jumps over the lazy dog" | |
# Tokenize the input text | |
inputs = tokenizer(text, return_tensors="pt") | |
input_ids = inputs['input_ids'] | |
# Get attention weights by running the model | |
with torch.no_grad(): | |
outputs = model(input_ids, output_attentions=True) | |
# Extract the attention weights (size: [num_layers, num_heads, seq_len, seq_len]) | |
attention_weights = outputs.attentions | |
# Select a specific layer and attention head | |
layer_idx = 0 # First layer | |
head_idx = 0 # First attention head | |
# Get the attention matrix for this layer and head | |
attention_matrix = attention_weights[layer_idx][0][head_idx].cpu().numpy() | |
# Use t-SNE to reduce the dimensionality of the attention matrix (embedding space) | |
# Attention matrix shape: [seq_len, seq_len], so we reduce each row (which corresponds to a token's attention distribution) | |
tsne = TSNE(n_components=2, random_state=42) | |
reduced_attention = tsne.fit_transform(attention_matrix) | |
# Plotting the reduced attention embeddings | |
fig, ax = plt.subplots(figsize=(10, 10)) | |
# Plot the reduced attention in 2D | |
ax.scatter(reduced_attention[:, 0], reduced_attention[:, 1]) | |
# Annotate the tokens in the scatter plot | |
tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) | |
for i, token in enumerate(tokens): | |
ax.annotate(token, (reduced_attention[i, 0], reduced_attention[i, 1]), fontsize=12, ha='right') | |
# Display the plot | |
plt.title(f"t-SNE Visualization of Attention - Layer {layer_idx+1}, Head {head_idx+1}") | |
plt.xlabel("t-SNE Dimension 1") | |
plt.ylabel("t-SNE Dimension 2") | |
plt.grid(True) | |
plt.show() | |
plt.savefig('test.png') | |