NeuralVista / yolov8.py
BhumikaMak's picture
Debug: parsing detections
87360eb
raw
history blame
3.51 kB
from ultralytics import YOLO
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
# Global Color Palette
COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(results):
boxes, colors, names = [], [], []
for result in results:
# Accessing boxes directly from the result
for box in result.boxes:
xmin, ymin, xmax, ymax = box.xyxy[0].int().tolist() # Convert to list of integers
category = int(box.cls[0].item()) # Class index
name = result.names[category] # Get class name from names
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[category]) # Ensure COLORS is defined elsewhere in your code
names.append(name)
return boxes, colors, names
def draw_detections(boxes, colors, names, img):
for box, color, name in zip(boxes, colors, names):
xmin, ymin, xmax, ymax = box
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(img, name, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA)
return img
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
img_float = np.float32(rgb_img) / 255
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
return cam_image, renormalized_cam_image
def xai_yolov8n(image):
model = YOLO('yolov8n.pt') # Load YOLOv8n pre-trained weights
model.eval()
# Check if GPU is available and use it
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
target_layers = [model.model.model[-2]] # Grad-CAM target layer
# Process the image through the model
results = model([image])
# If results are a list, extract the first element (detected results)
if isinstance(results, list):
results = results[0] # Extracting the first result (if list)
# Ensure that outputs are in tensor form
logits = results.pred[0] # Get the prediction tensor from the results
# Parse the detections
boxes, colors, names = parse_detections([results]) # Ensure results are passed as a list
detections_img = draw_detections(boxes, colors, names, image.copy())
# Prepare image for Grad-CAM
img_float = np.float32(image) / 255
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0).to(device) # Ensure tensor is on the right device
# Generate CAM images
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
# Combine original image, CAM image, and renormalized CAM image
final_image = np.hstack((image, cam_image, renormalized_cam_image))
# Return final image and a caption
caption = "Results using YOLOv8n"
return Image.fromarray(final_image), caption