Spaces:
Sleeping
Sleeping
from ultralytics import YOLO | |
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
import gradio as gr | |
# Global Color Palette | |
COLORS = np.random.uniform(0, 255, size=(80, 3)) | |
def parse_detections(results): | |
boxes, colors, names = [], [], [] | |
for result in results: | |
# Accessing boxes directly from the result | |
for box in result.boxes: | |
xmin, ymin, xmax, ymax = box.xyxy[0].int().tolist() # Convert to list of integers | |
category = int(box.cls[0].item()) # Class index | |
name = result.names[category] # Get class name from names | |
boxes.append((xmin, ymin, xmax, ymax)) | |
colors.append(COLORS[category]) # Ensure COLORS is defined elsewhere in your code | |
names.append(name) | |
return boxes, colors, names | |
def draw_detections(boxes, colors, names, img): | |
for box, color, name in zip(boxes, colors, names): | |
xmin, ymin, xmax, ymax = box | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) | |
cv2.putText(img, name, (xmin, ymin - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, | |
lineType=cv2.LINE_AA) | |
return img | |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): | |
cam = EigenCAM(model, target_layers) | |
grayscale_cam = cam(tensor)[0, :, :] | |
img_float = np.float32(rgb_img) / 255 | |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) | |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) | |
for x1, y1, x2, y2 in boxes: | |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) | |
renormalized_cam = scale_cam_image(renormalized_cam) | |
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) | |
return cam_image, renormalized_cam_image | |
def xai_yolov8n(image): | |
model = YOLO('yolov8n.pt') # Load YOLOv8n pre-trained weights | |
model.eval() | |
# Check if GPU is available and use it | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
target_layers = [model.model.model[-2]] # Grad-CAM target layer | |
# Process the image through the model | |
results = model([image]) | |
# If results are a list, extract the first element (detected results) | |
if isinstance(results, list): | |
results = results[0] # Extracting the first result (if list) | |
# Ensure that outputs are in tensor form | |
logits = results.pred[0] # Get the prediction tensor from the results | |
# Parse the detections | |
boxes, colors, names = parse_detections([results]) # Ensure results are passed as a list | |
detections_img = draw_detections(boxes, colors, names, image.copy()) | |
# Prepare image for Grad-CAM | |
img_float = np.float32(image) / 255 | |
transform = transforms.ToTensor() | |
tensor = transform(img_float).unsqueeze(0).to(device) # Ensure tensor is on the right device | |
# Generate CAM images | |
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes) | |
# Combine original image, CAM image, and renormalized CAM image | |
final_image = np.hstack((image, cam_image, renormalized_cam_image)) | |
# Return final image and a caption | |
caption = "Results using YOLOv8n" | |
return Image.fromarray(final_image), caption |