NeuralVista / yolov8.py
BhumikaMak's picture
Update: display return
01ceba0
raw
history blame
2.9 kB
import torch
import cv2
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
import gradio as gr
from ultralytics import YOLO
COLORS = np.random.uniform(0, 255, size=(80, 3))
def parse_detections(detections, model):
boxes, colors, names, classes = [], [], [], []
for detection in detections.boxes:
xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist())
confidence = detection.conf.item()
if confidence < 0.2:
continue
class_id = int(detection.cls.item())
name = model.names[class_id]
boxes.append((xmin, ymin, xmax, ymax))
colors.append(COLORS[class_id])
names.append(name)
classes.append(class_id)
return boxes, colors, names, classes
def draw_detections(boxes, colors, names, classes, img):
for box, color, name, cls in zip(boxes, colors, names, classes):
xmin, ymin, xmax, ymax = box
label = f"{cls}: {name}" # Combine class ID and name
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
cv2.putText(
img, label, (xmin, ymin - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA
)
return img
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
cam = EigenCAM(model, target_layers)
model_output = model(tensor)[0] # Adjust based on output structure
grayscale_cam = cam(tensor, targets=model_output)[0, :, :]
img_float = np.float32(rgb_img) / 255
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
return cam_image, renormalized_cam_image
def xai_yolov8s(image):
model = YOLO('yolov8s.pt') # Ensure the model weights are available
model.eval()
results = model(image)
detections = results[0]
boxes, colors, names, classes = parse_detections(detections, model)
detections_img = draw_detections(boxes, colors, names, classes, image.copy())
img_float = np.float32(image) / 255
transform = transforms.ToTensor()
tensor = transform(img_float).unsqueeze(0)
target_layers = [model.model.model[-2]] # Adjust to YOLOv8 architecture
cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes)
final_image = np.hstack((image, detections_img, renormalized_cam_image))
caption = "Results using YOLOv8"
return Image.fromarray(final_image), caption