Spaces:
Sleeping
Sleeping
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
import gradio as gr | |
from ultralytics import YOLO | |
COLORS = np.random.uniform(0, 255, size=(80, 3)) | |
def parse_detections(detections, model): | |
boxes, colors, names, classes = [], [], [], [] | |
for detection in detections.boxes: | |
xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist()) | |
confidence = detection.conf.item() | |
if confidence < 0.2: | |
continue | |
class_id = int(detection.cls.item()) | |
name = model.names[class_id] | |
boxes.append((xmin, ymin, xmax, ymax)) | |
colors.append(COLORS[class_id]) | |
names.append(name) | |
classes.append(class_id) | |
return boxes, colors, names, classes | |
def draw_detections(boxes, colors, names, classes, img): | |
for box, color, name, cls in zip(boxes, colors, names, classes): | |
xmin, ymin, xmax, ymax = box | |
label = f"{cls}: {name}" # Combine class ID and name | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) | |
cv2.putText( | |
img, label, (xmin, ymin - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, | |
lineType=cv2.LINE_AA | |
) | |
return img | |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): | |
cam = EigenCAM(model, target_layers) | |
model_output = model(tensor)[0] # Adjust based on output structure | |
grayscale_cam = cam(tensor, targets=model_output)[0, :, :] | |
img_float = np.float32(rgb_img) / 255 | |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) | |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) | |
for x1, y1, x2, y2 in boxes: | |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) | |
renormalized_cam = scale_cam_image(renormalized_cam) | |
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) | |
return cam_image, renormalized_cam_image | |
def xai_yolov8s(image): | |
model = YOLO('yolov8s.pt') # Ensure the model weights are available | |
model.eval() | |
results = model(image) | |
detections = results[0] | |
boxes, colors, names, classes = parse_detections(detections, model) | |
detections_img = draw_detections(boxes, colors, names, classes, image.copy()) | |
img_float = np.float32(image) / 255 | |
transform = transforms.ToTensor() | |
tensor = transform(img_float).unsqueeze(0) | |
target_layers = [model.model.model[-2]] # Adjust to YOLOv8 architecture | |
cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes) | |
final_image = np.hstack((image, detections_img, renormalized_cam_image)) | |
caption = "Results using YOLOv8" | |
return Image.fromarray(final_image), caption |