Spaces:
Sleeping
Sleeping
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
import gradio as gr | |
from ultralytics import YOLO | |
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from pytorch_grad_cam import EigenCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image | |
import gradio as gr | |
import os | |
from typing import Callable, List, Tuple, Optional | |
from sklearn.decomposition import NMF | |
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients | |
from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image | |
import matplotlib.pyplot as plt | |
from pytorch_grad_cam.utils.image import show_factorization_on_image | |
import requests | |
import yaml | |
import matplotlib.patches as patches | |
COLORS = np.random.uniform(0, 255, size=(80, 3)) | |
def parse_detections(detections, model): | |
boxes, colors, names, classes = [], [], [], [] | |
for detection in detections.boxes: | |
xmin, ymin, xmax, ymax = map(int, detection.xyxy[0].tolist()) | |
confidence = detection.conf.item() | |
if confidence < 0.2: | |
continue | |
class_id = int(detection.cls.item()) | |
name = model.names[class_id] | |
boxes.append((xmin, ymin, xmax, ymax)) | |
colors.append(COLORS[class_id]) | |
names.append(name) | |
classes.append(class_id) | |
return boxes, colors, names, classes | |
def draw_detections(boxes, colors, names, classes, img): | |
for box, color, name, cls in zip(boxes, colors, names, classes): | |
xmin, ymin, xmax, ymax = box | |
label = f"{cls}: {name}" # Combine class ID and name | |
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) | |
cv2.putText( | |
img, label, (xmin, ymin - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2, | |
lineType=cv2.LINE_AA | |
) | |
return img | |
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes): | |
cam = EigenCAM(model, target_layers) | |
model_output = model(tensor)[0] # Adjust based on output structure | |
grayscale_cam = cam(tensor, targets=model_output)[0, :, :] | |
img_float = np.float32(rgb_img) / 255 | |
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True) | |
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32) | |
for x1, y1, x2, y2 in boxes: | |
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy()) | |
renormalized_cam = scale_cam_image(renormalized_cam) | |
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True) | |
return cam_image, renormalized_cam_image | |
def xai_yolov8s(image): | |
model = YOLO('yolov8s.pt') # Ensure the model weights are available | |
model.eval() | |
results = model(image) | |
detections = results[0] | |
boxes, colors, names, classes = parse_detections(detections, model) | |
detections_img = draw_detections(boxes, colors, names, classes, image.copy()) | |
img_float = np.float32(image) / 255 | |
transform = transforms.ToTensor() | |
tensor = transform(img_float).unsqueeze(0) | |
target_layers = [model.model.model[-2]] # Adjust to YOLOv8 architecture | |
cam_image, renormalized_cam_image = generate_cam_image(model.model, target_layers, tensor, image, boxes) | |
rgb_img_float, batch_explanations, result = dff_nmf(image, target_lyr = -5, n_components = 8) | |
final_image = np.hstack((image, detections_img, renormalized_cam_image)) | |
caption = "Results using YOLOv8" | |
return Image.fromarray(final_image), caption, result | |
def dff_l(activations, model, n_components): | |
batch_size, channels, h, w = activations.shape | |
print('activation', activations.shape) | |
target_layer_index = 4 | |
reshaped_activations = activations.transpose((1, 0, 2, 3)) | |
reshaped_activations[np.isnan(reshaped_activations)] = 0 | |
reshaped_activations = reshaped_activations.reshape( | |
reshaped_activations.shape[0], -1) | |
offset = reshaped_activations.min(axis=-1) | |
reshaped_activations = reshaped_activations - offset[:, None] | |
model = NMF(n_components=n_components, init='random', random_state=0) | |
W = model.fit_transform(reshaped_activations) | |
H = model.components_ | |
concepts = W + offset[:, None] | |
explanations = H.reshape(n_components, batch_size, h, w) | |
explanations = explanations.transpose((1, 0, 2, 3)) | |
return concepts, explanations | |
class DeepFeatureFactorization: | |
def __init__(self, | |
model: torch.nn.Module, | |
target_layer: torch.nn.Module, | |
reshape_transform: Callable = None, | |
computation_on_concepts=None | |
): | |
self.model = model | |
self.computation_on_concepts = computation_on_concepts | |
self.activations_and_grads = ActivationsAndGradients( | |
self.model, [target_layer], reshape_transform) | |
def __call__(self, | |
input_tensor: torch.Tensor, | |
model: torch.nn.Module, | |
n_components: int = 16): | |
if isinstance(input_tensor, np.ndarray): | |
input_tensor = torch.from_numpy(input_tensor) | |
batch_size, channels, h, w = input_tensor.size() | |
_ = self.activations_and_grads(input_tensor) | |
with torch.no_grad(): | |
activations = self.activations_and_grads.activations[0].cpu( | |
).numpy() | |
concepts, explanations = dff_l(activations, model, n_components=n_components) | |
processed_explanations = [] | |
for batch in explanations: | |
processed_explanations.append(scale_cam_image(batch, (w, h))) | |
if self.computation_on_concepts: | |
with torch.no_grad(): | |
concept_tensors = torch.from_numpy( | |
np.float32(concepts).transpose((1, 0))) | |
concept_outputs = self.computation_on_concepts( | |
concept_tensors).cpu().numpy() | |
return concepts, processed_explanations, concept_outputs | |
else: | |
return concepts, processed_explanations, explanations | |
def __del__(self): | |
self.activations_and_grads.release() | |
def __exit__(self, exc_type, exc_value, exc_tb): | |
self.activations_and_grads.release() | |
if isinstance(exc_value, IndexError): | |
# Handle IndexError here... | |
print( | |
f"An exception occurred in ActivationSummary with block: {exc_type}. Message: {exc_value}") | |
return True | |
def dff_nmf(image, target_lyr, n_components): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mean = [0.485, 0.456, 0.406] # Mean for RGB channels | |
std = [0.229, 0.224, 0.225] # Standard deviation for RGB channels | |
img = cv2.resize(image, (640, 640)) | |
rgb_img_float = np.float32(img) / 255.0 | |
input_tensor = torch.from_numpy(rgb_img_float).permute(2, 0, 1).unsqueeze(0).to(device) | |
model = YOLO('yolov8s.pt') # Ensure the model is loaded correctly | |
dff = DeepFeatureFactorization(model=model, | |
target_layer=model.model.model[int(target_lyr)], | |
computation_on_concepts=None) | |
concepts, batch_explanations, explanations = dff(input_tensor, model, n_components) | |
results = [] | |
for indx in range(explanations[0].shape[0]): | |
upsampled_input = explanations[0][indx] | |
upsampled_input = torch.tensor(upsampled_input) | |
device = next(model.parameters()).device | |
input_tensor = upsampled_input.unsqueeze(0) | |
input_tensor = input_tensor.unsqueeze(1).repeat(1, 128, 1, 1) | |
fig, ax = plt.subplots(1, figsize=(8, 8)) | |
ax.axis("off") | |
ax.imshow(torch.tensor(batch_explanations[0][indx]).cpu().numpy(), cmap="plasma") # Display i | |
plt.subplots_adjust(left=0, right=1, top=1, bottom=0) | |
fig.canvas.draw() # Draw the canvas to make sure the image is rendered | |
image_array = np.array(fig.canvas.renderer.buffer_rgba()) # Convert to numpy array | |
print("____________image_arrya", image_array.shape) | |
image_resized = cv2.resize(image_array, (640, 640)) | |
rgba_channels = cv2.split(image_resized) | |
alpha_channel = rgba_channels[3] | |
rgb_channels = np.stack(rgba_channels[:3], axis=-1) | |
#overlay_img = (alpha_channel[..., None] * image) + ((1 - alpha_channel[..., None]) * rgb_channels) | |
#temp = image_array.reshape((rgb_img_float.shape[0],rgb_img_float.shape[1]) ) | |
#visualization = show_factorization_on_image(rgb_img_float, image_array.resize((rgb_img_float.shape)) , image_weight=0.3) | |
visualization = show_factorization_on_image(rgb_img_float, np.transpose(rgb_channels, (2, 0, 1)), image_weight=0.3) | |
results.append(visualization) | |
plt.clf() | |
return rgb_img_float, batch_explanations, results | |
def visualize_batch_explanations(rgb_img_float, batch_explanations, image_weight=0.7): | |
for i, explanation in enumerate(batch_explanations): | |
# Create visualization for each explanation | |
print("visualization concepts",rgb_img_float.shape,explanation.shape ) | |
visualization = show_factorization_on_image(rgb_img_float, explanation, image_weight=image_weight) | |
plt.figure() | |
plt.imshow(visualization) # Correctly pass the visualization data | |
plt.title(f'Explanation {i + 1}') # Set the title for each plot | |
plt.axis('off') # Hide axes | |
plt.show() # Show the plot | |
plt.savefig("test_w.png") | |
print('viz', visualization.shape) | |
return visualization |