import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
import numpy as np | |
model_name = "Bittar/outputs" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
mapping = { | |
0: 'negative', | |
1: 'positive' | |
} | |
def predict(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
predictions = outputs.logits | |
return mapping[predictions.argmax().item()] | |
iface = gr.Interface( | |
fn=predict, | |
inputs="text", | |
outputs="text", | |
layout="vertical", | |
title="Movie feelings classifier", | |
description="do u feel positive or negative about a movie? Write your review down and find out! (only works in english)" | |
) | |
iface.launch(share=True) |