Spaces:
Sleeping
Sleeping
from torch import nn | |
class CNN(nn.Module): | |
def __init__(self, num_classes): | |
super(CNN, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1) | |
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1) | |
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.bn1 = nn.BatchNorm2d(32) | |
self.bn2 = nn.BatchNorm2d(64) | |
self.bn3 = nn.BatchNorm2d(128) | |
self.fc1 = nn.Linear(128 * 16 * 16, 512) | |
self.fc2 = nn.Linear(512, 256) | |
self.fc3 = nn.Linear(256, 128) | |
self.fc4 = nn.Linear(128 ,num_classes) | |
self.dropout = nn.Dropout(0.5) | |
def forward(self, x): | |
x = nn.functional.relu(self.conv1(x)) | |
x = self.bn1(x) | |
x = self.pool(x) | |
x = nn.functional.relu(self.conv2(x)) | |
x = self.bn2(x) | |
x = self.pool(x) | |
x = nn.functional.relu(self.conv3(x)) | |
x = self.bn3(x) | |
x = self.pool(x) | |
x = x.view(-1, 128 * 16 * 16) | |
x = nn.functional.relu(self.fc1(x)) | |
x = nn.functional.relu(self.fc2(x)) | |
x = self.dropout(x) | |
x = nn.functional.relu(self.fc3(x)) | |
x = self.dropout(x) | |
x = self.fc4(x) | |
return x |