File size: 8,252 Bytes
57f2485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2285c
57f2485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d13e5
57f2485
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import os

import gradio as gr
import mdtex2html
from gradio.themes.utils import colors, fonts, sizes
import torch
from peft import PeftModel
from transformers import (
    AutoModel,
    AutoTokenizer,
    AutoModelForCausalLM,
    BloomForCausalLM,
    BloomTokenizerFast,
    LlamaTokenizer,
    LlamaForCausalLM,
    GenerationConfig,
)

MODEL_CLASSES = {
    "bloom": (BloomForCausalLM, BloomTokenizerFast),
    "chatglm": (AutoModel, AutoTokenizer),
    "llama": (LlamaForCausalLM, LlamaTokenizer),
    "auto": (AutoModelForCausalLM, AutoTokenizer),
}

class OpenGVLab(gr.themes.base.Base):
    def __init__(
        self,
        *,
        primary_hue=colors.blue,
        secondary_hue=colors.sky,
        neutral_hue=colors.gray,
        spacing_size=sizes.spacing_md,
        radius_size=sizes.radius_sm,
        text_size=sizes.text_md,
        font=(
            fonts.GoogleFont("Noto Sans"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono=(
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="*neutral_50",
        )


gvlabtheme = OpenGVLab(primary_hue=colors.blue,
        secondary_hue=colors.sky,
        neutral_hue=colors.gray,
        spacing_size=sizes.spacing_md,
        radius_size=sizes.radius_sm,
        text_size=sizes.text_md,
        )

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_type', default="llama", type=str)
    parser.add_argument('--base_model', default="DUOMO-Lab/TransGPT-v0", type=str)
    parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
    parser.add_argument('--tokenizer_path', default=None, type=str)
    parser.add_argument('--gpus', default="0", type=str)
    parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
    parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
    args = parser.parse_args()
    if args.only_cpu is True:
        args.gpus = ""
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus

    def postprocess(self, y):
        if y is None:
            return []
        for i, (message, response) in enumerate(y):
            y[i] = (
                None if message is None else mdtex2html.convert((message)),
                None if response is None else mdtex2html.convert(response),
            )
        return y

    gr.Chatbot.postprocess = postprocess

    generation_config = dict(
        temperature=0.2,
        top_k=40,
        top_p=0.9,
        do_sample=True,
        num_beams=1,
        repetition_penalty=1.1,
        max_new_tokens=400
    )
    load_type = torch.float16
    if torch.cuda.is_available():
        device = torch.device(0)
    else:
        device = torch.device('cpu')

    if args.tokenizer_path is None:
        args.tokenizer_path = args.base_model
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
    base_model = model_class.from_pretrained(
        args.base_model,
        load_in_8bit=False,
        torch_dtype=load_type,
        low_cpu_mem_usage=True,
        device_map='auto',
        trust_remote_code=True,
    )
    if args.resize_emb:
        model_vocab_size = base_model.get_input_embeddings().weight.size(0)
        tokenzier_vocab_size = len(tokenizer)
        print(f"Vocab of the base model: {model_vocab_size}")
        print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
        if model_vocab_size != tokenzier_vocab_size:
            print("Resize model embeddings to fit tokenizer")
            base_model.resize_token_embeddings(tokenzier_vocab_size)
    if args.lora_model:
        model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
        print("loaded lora model")
    else:
        model = base_model

    if device == torch.device('cpu'):
        model.float()

    model.eval()

    def reset_user_input():
        return gr.update(value='')

    def reset_state():
        return [], []

    def generate_prompt(instruction):
        return f"""You are TransGPT, a specialist in the field of transportation.Below is an instruction that describes a task. Write a response that appropriately completes the request.
    
    ### Instruction:
    {instruction}
    
    ### Response: """

    def predict(
            input,
            chatbot,
            history,
            max_new_tokens=128,
            top_p=0.75,
            temperature=0.1,
            top_k=40,
            num_beams=4,
            repetition_penalty=1.0,
            max_memory=256,
            **kwargs,
    ):
        now_input = input
        chatbot.append((input, ""))
        history = history or []
        if len(history) != 0:
            input = "".join(
                ["### Instruction:\n" + i[0] + "\n\n" + "### Response: " + i[1] + "\n\n" for i in history]) + \
                    "### Instruction:\n" + input
            input = input[len("### Instruction:\n"):]
            if len(input) > max_memory:
                input = input[-max_memory:]
        prompt = generate_prompt(input)
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
            **kwargs,
        )
        with torch.no_grad():
            generation_output = model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=False,
                max_new_tokens=max_new_tokens,
                repetition_penalty=float(repetition_penalty),
            )
        s = generation_output.sequences[0]
        output = tokenizer.decode(s, skip_special_tokens=True)
        output = output.split("### Response:")[-1].strip()
        history.append((now_input, output))
        chatbot[-1] = (now_input, output)
        return chatbot, history
    
    title = """<h1 align="center">Welcome to TransGPT!"""

    with gr.Blocks(title="DUOMO TransGPT!", theme=gvlabtheme,
                   css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
        gr.Markdown(title)
        chatbot = gr.Chatbot()
        with gr.Row():
            with gr.Column(scale=4):
                with gr.Column(scale=12):
                    user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
                        container=False)
                with gr.Column(min_width=32, scale=1):
                    submitBtn = gr.Button("Submit", variant="primary")
            with gr.Column(scale=1):
                emptyBtn = gr.Button("Clear History")
                max_length = gr.Slider(
                    0, 4096, value=128, step=1.0, label="Maximum length", interactive=True)
                top_p = gr.Slider(0, 1, value=0.8, step=0.01,
                                  label="Top P", interactive=True)
                temperature = gr.Slider(
                    0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)

        history = gr.State([])  # (message, bot_message)

        submitBtn.click(predict, [user_input, chatbot, history, max_length, top_p, temperature], [chatbot, history],
                        show_progress=True)
        submitBtn.click(reset_user_input, [], [user_input])

        emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
    demo.queue().launch()


if __name__ == '__main__':
    main()