File size: 7,578 Bytes
fac857d a2bedfa fac857d a2bedfa fac857d a2bedfa fac857d a2bedfa fac857d a2bedfa fac857d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
from saicinpainting.evaluation.utils import move_to_device
from saicinpainting.evaluation.refinement import refine_predict
from saicinpainting.evaluation.data import pad_img_to_modulo
from saicinpainting.training.trainers import load_checkpoint
import numpy as np
import torch
import yaml
from omegaconf import OmegaConf
from torch.utils.data._utils.collate import default_collate
import os
#from gradio_imageslider import ImageSlider
import requests
import zipfile
import os
# URL of the file to download
url = "https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip"
# Local filename to save the downloaded file
local_filename = "big-lama.zip"
# Directory to extract the files into
extract_dir = "big-lama"
# Check if the extracted directory already exists
if os.path.exists(extract_dir):
print(f"The directory '{extract_dir}' already exists. Skipping download and extraction.")
else:
# Check if the zip file already exists
if not os.path.exists(local_filename):
# Download the file
with requests.get(url, stream=True) as response:
response.raise_for_status()
with open(local_filename, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded '{local_filename}' successfully.")
else:
print(f"The file '{local_filename}' already exists. Skipping download.")
# Unzip the file
with zipfile.ZipFile(local_filename, 'r') as zip_ref:
zip_ref.extractall()
print(f"Extracted '{local_filename}' into '{extract_dir}' successfully.")
# Optionally, remove the zip file after extraction
os.remove(local_filename)
print(f"Removed '{local_filename}' after extraction.")
generator = torch.Generator(device="cuda").manual_seed(42)
size = (1024, 1024)
def image_preprocess(image: Image, mode="RGB", return_orig=False):
img = np.array(image.convert(mode))
if img.ndim == 3:
img = np.transpose(img, (2, 0, 1))
out_img = img.astype("float32") / 255
if return_orig:
return out_img, img
else:
return out_img
def infer(image):
source = image["background"].convert("RGB").resize(size)
mask = image["layers"][0]
mask = mask.point(lambda p: p > 0 and 255).split()[3]
mask.convert("RGB")
# binary_mask = mask.point(lambda p: 255 if p > 0 else 0)
# inverted_mask = ImageChops.invert(binary_mask)
# alpha_image = Image.new("RGB", source.size, (0, 0, 0))
# cnet_image = Image.composite(source, alpha_image, inverted_mask)
device = torch.device("cpu")
predict_config_path = "/home/naumov/lama_predict/configs/prediction/default.yaml"
with open(predict_config_path, "r") as f:
predict_config = OmegaConf.create(yaml.safe_load(f))
train_config_path = os.path.join(predict_config.model.path, "config.yaml")
with open(train_config_path, "r") as f:
train_config = OmegaConf.create(yaml.safe_load(f))
train_config.training_model.predict_only = True
train_config.visualizer.kind = "noop"
checkpoint_path = os.path.join(
predict_config.model.path, "models", predict_config.model.checkpoint
)
model = load_checkpoint(
train_config, checkpoint_path, strict=False, map_location="cpu"
)
model.freeze()
if not predict_config.get("refine", False):
model.to(device)
img = image_preprocess(source, mode="RGB")
mask = image_preprocess(mask, mode="L")
result = dict(image=img, mask=mask[None, ...])
if (
predict_config.dataset.pad_out_to_modulo is not None
and predict_config.dataset.pad_out_to_modulo > 1
):
result["unpad_to_size"] = result["image"].shape[1:]
result["image"] = pad_img_to_modulo(
result["image"], predict_config.dataset.pad_out_to_modulo
)
result["mask"] = pad_img_to_modulo(
result["mask"], predict_config.dataset.pad_out_to_modulo
)
batch = default_collate([result])
if predict_config.get("refine", False):
assert "unpad_to_size" in batch, "Unpadded size is required for the refinement"
# image unpadding is taken care of in the refiner, so that output image
# is same size as the input image
cur_res = refine_predict(batch, model, **predict_config.refiner)
cur_res = cur_res[0].permute(1, 2, 0).detach().cpu().numpy()
else:
with torch.no_grad():
batch = move_to_device(batch, device)
batch["mask"] = (batch["mask"] > 0) * 1
batch = model(batch)
cur_res = (
batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy()
)
unpad_to_size = batch.get("unpad_to_size", None)
if unpad_to_size is not None:
orig_height, orig_width = unpad_to_size
cur_res = cur_res[:orig_height, :orig_width]
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
yield cur_res
def clear_result():
return gr.update(value=None)
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
prefix = ""
title = f"""
<div class="main-div">
<div>
<h1>Lama model</h1>
</div>
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else "<b>CPU 🥶</b>"} <br><br>
<a style="display:inline-block" href="https://huggingface.co/spaces/akhaliq/small-stable-diffusion-v0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</div>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
run_button = gr.Button("Generate")
with gr.Row():
input_image = gr.ImageMask(
type="pil",
label="Input Image",
crop_size=(1024, 1024),
layers=False,
height=712,
width=712
)
result = gr.Image(
interactive=False,
label="Generated Image",
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
def use_output_as_input(output_image):
return gr.update(value=output_image)
use_as_input_button.click(
fn=use_output_as_input, inputs=[result], outputs=[input_image]
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=infer,
inputs=[input_image],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
# prompt.submit(
# fn=clear_result,
# inputs=None,
# outputs=result,
# ).then(
# fn=lambda: gr.update(visible=False),
# inputs=None,
# outputs=use_as_input_button,
# ).then(
# fn=infer,
# inputs=[prompt, input_image],
# outputs=result,
# ).then(
# fn=lambda: gr.update(visible=True),
# inputs=None,
# outputs=use_as_input_button,
# )
demo.launch()
|