|
import math |
|
import os |
|
import random |
|
import signal |
|
import sys |
|
from pathlib import Path |
|
|
|
import bitsandbytes as bnb |
|
import fire |
|
import torch |
|
import transformers |
|
import yaml |
|
from attrdict import AttrDefault |
|
from datasets import load_dataset, IterableDataset, Dataset, load_from_disk |
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
prepare_model_for_int8_training, |
|
PeftModel, |
|
) |
|
from torch import nn |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer |
|
|
|
|
|
from transformers.trainer_pt_utils import get_parameter_names |
|
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) |
|
src_dir = os.path.join(project_root, "src") |
|
sys.path.insert(0, src_dir) |
|
|
|
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset |
|
from axolotl.prompt_tokenizers import ( |
|
AlpacaPromptTokenizingStrategy, |
|
ShareGPTPromptTokenizingStrategy, |
|
LLAMA_DEFAULT_PAD_TOKEN, |
|
GPTeacherPromptTokenizingStrategy, |
|
) |
|
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter |
|
|
|
|
|
def setup_wandb_env_vars(cfg): |
|
if len(cfg.wandb_project) > 0: |
|
os.environ["WANDB_PROJECT"] = cfg.wandb_project |
|
cfg.use_wandb = True |
|
if cfg.wandb_watch and len(cfg.wandb_watch) > 0: |
|
os.environ["WANDB_WATCH"] = cfg.wandb_watch |
|
if cfg.wandb_log_model and len(cfg.wandb_log_model) > 0: |
|
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model |
|
|
|
|
|
def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"): |
|
if adapter != "lora": |
|
raise NotImplementedError(f"{adapter} peft adapter not available") |
|
if "llama" in base_model: |
|
if cfg.device not in ["mps", "cpu"]: |
|
from axolotl.flash_attn import replace_llama_attn_with_flash_attn |
|
replace_llama_attn_with_flash_attn() |
|
|
|
try: |
|
if "llama" in base_model: |
|
model = LlamaForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
else: |
|
model = getattr(transformers, model_type).from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
except: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
load_in_8bit=cfg.load_in_8bit, |
|
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32, |
|
device_map=cfg.device_map, |
|
) |
|
|
|
try: |
|
if "llama" in base_model: |
|
tokenizer = LlamaTokenizer.from_pretrained(model) |
|
else: |
|
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model) |
|
except: |
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
|
|
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]: |
|
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN |
|
|
|
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast": |
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
if cfg.load_in_8bit: |
|
model = prepare_model_for_int8_training(model) |
|
|
|
lora_config = LoraConfig( |
|
r=cfg.lora_r, |
|
lora_alpha=cfg.lora_alpha, |
|
target_modules=cfg.lora_target_modules, |
|
lora_dropout=cfg.lora_dropout, |
|
fan_in_fan_out=cfg.lora_fan_in_fan_out, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
if cfg.lora_model_dir: |
|
model = PeftModel.from_pretrained(model, cfg.lora_model_dir, device_map = cfg.device_map, torch_dtype=torch.float16) |
|
else: |
|
model = get_peft_model(model, lora_config) |
|
|
|
if cfg.ddp: |
|
model.to(f"cuda:{cfg.local_rank}") |
|
|
|
|
|
model.print_trainable_parameters() |
|
return model, tokenizer, lora_config |
|
|
|
|
|
def choose_device(cfg): |
|
def get_device(): |
|
if torch.cuda.is_available(): |
|
return "cuda" |
|
else: |
|
try: |
|
if torch.backends.mps.is_available(): |
|
return "mps" |
|
except: |
|
return "cpu" |
|
|
|
cfg.device = get_device() |
|
if cfg.device == "cuda": |
|
cfg.device_map = {"": cfg.local_rank} |
|
else: |
|
cfg.device_map = {"": cfg.device} |
|
|
|
|
|
def check_dataset_labels(dataset, tokenizer): |
|
from termcolor import colored |
|
|
|
|
|
for idx in range(5): |
|
|
|
input_ids = dataset[idx]["input_ids"] |
|
labels = dataset[idx]["labels"] |
|
attention_mask = dataset[idx]["attention_mask"] |
|
|
|
|
|
|
|
colored_tokens = [] |
|
for i, (input_id, label_id, mask) in enumerate( |
|
zip(input_ids, labels, attention_mask) |
|
): |
|
decoded_input_token = tokenizer.decode(input_id) |
|
|
|
color = ( |
|
"red" if label_id == -100 else ("yellow" if label_id == 0 else "green") |
|
) |
|
colored_token = colored(decoded_input_token, color) + colored( |
|
f"({label_id}, {mask})", "white" |
|
) |
|
colored_tokens.append(colored_token) |
|
|
|
print(" ".join(colored_tokens)) |
|
print("\n\n\n") |
|
|
|
|
|
def do_inference(cfg, model, tokenizer): |
|
instruction = "Tell me a joke about dromedaries." |
|
input = "" |
|
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n".format(instruction=instruction, input=input) |
|
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
generated = model.generate(inputs=batch["input_ids"], |
|
do_sample=True, use_cache=True, |
|
repetition_penalty=1.1, |
|
max_new_tokens=50, |
|
temperature=0.9, |
|
top_p=0.95, |
|
top_k=40, |
|
return_dict_in_generate=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
output_scores=False) |
|
print(tokenizer.decode(generated['sequences'].cpu().tolist()[0])) |
|
|
|
|
|
def choose_config(path: Path): |
|
yaml_files = [file for file in path.glob("*.yml")] |
|
|
|
if not yaml_files: |
|
raise ValueError("No YAML config files found in the specified directory. Are you using a .yml extension?") |
|
|
|
print("Choose a YAML file:") |
|
for idx, file in enumerate(yaml_files): |
|
print(f"{idx + 1}. {file}") |
|
|
|
chosen_file = None |
|
while chosen_file is None: |
|
try: |
|
choice = int(input("Enter the number of your choice: ")) |
|
if 1 <= choice <= len(yaml_files): |
|
chosen_file = yaml_files[choice - 1] |
|
else: |
|
print("Invalid choice. Please choose a number from the list.") |
|
except ValueError: |
|
print("Invalid input. Please enter a number.") |
|
|
|
return chosen_file |
|
|
|
|
|
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer): |
|
total_num_steps = int( |
|
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size) |
|
) |
|
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200) |
|
|
|
training_arguments_kwargs = {} |
|
|
|
if not cfg.deepspeed: |
|
warmup_steps = min(int(0.03 * total_num_steps), 100) |
|
logging_steps = min(int(0.005 * total_num_steps), 10) |
|
|
|
training_arguments_kwargs["warmup_steps"] = warmup_steps |
|
training_arguments_kwargs["logging_steps"] = logging_steps |
|
training_arguments_kwargs["logging_steps"] = logging_steps |
|
training_arguments_kwargs["bf16"] = cfg.bf16 |
|
training_arguments_kwargs["tf32"] = cfg.tf32 |
|
|
|
training_args = transformers.TrainingArguments( |
|
per_device_train_batch_size=cfg.micro_batch_size, |
|
gradient_accumulation_steps=cfg.gradient_accumulation_steps, |
|
num_train_epochs=cfg.num_epochs, |
|
learning_rate=cfg.learning_rate, |
|
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no", |
|
save_strategy="steps", |
|
eval_steps=eval_steps if cfg.val_set_size > 0 else None, |
|
save_steps=save_steps, |
|
output_dir=cfg.output_dir, |
|
save_total_limit=3, |
|
load_best_model_at_end=True if cfg.val_set_size > 0 else False, |
|
ddp_find_unused_parameters=False if cfg.ddp else None, |
|
group_by_length=cfg.group_by_length, |
|
report_to="wandb" if cfg.use_wandb else None, |
|
run_name=cfg.wandb_run_name if cfg.use_wandb else None, |
|
**training_arguments_kwargs, |
|
) |
|
|
|
trainer_kwargs = {} |
|
|
|
if not cfg.deepspeed: |
|
decay_parameters = get_parameter_names(model, [nn.LayerNorm]) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if n in decay_parameters], |
|
"weight_decay": training_args.weight_decay, |
|
}, |
|
{ |
|
"params": [ |
|
p for n, p in model.named_parameters() if n not in decay_parameters |
|
], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
|
|
adam_bnb_optim = bnb.optim.Adam8bit( |
|
optimizer_grouped_parameters, |
|
betas=(training_args.adam_beta1, training_args.adam_beta2), |
|
eps=training_args.adam_epsilon, |
|
lr=training_args.learning_rate, |
|
) |
|
|
|
lr_scheduler = transformers.get_cosine_schedule_with_warmup( |
|
adam_bnb_optim, |
|
training_args.warmup_steps, |
|
total_num_steps, |
|
) |
|
trainer_kwargs["optimizers"] = (adam_bnb_optim, lr_scheduler) |
|
|
|
|
|
trainer = transformers.Trainer( |
|
model=model, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
args=training_args, |
|
data_collator=transformers.DataCollatorForSeq2Seq( |
|
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True |
|
), |
|
**trainer_kwargs, |
|
) |
|
|
|
return trainer |
|
|
|
def train( |
|
config: Path = Path("configs/"), |
|
**kwargs, |
|
): |
|
if Path(config).is_dir(): |
|
config = choose_config(config) |
|
|
|
|
|
with open(config, "r") as f: |
|
cfg: AttrDefault = AttrDefault(lambda: None, yaml.load(f, Loader=yaml.Loader)) |
|
|
|
|
|
cfg_keys = dict(cfg).keys() |
|
for k in kwargs: |
|
if k in cfg_keys: |
|
|
|
if isinstance(cfg[k], bool): |
|
cfg[k] = bool(kwargs[k]) |
|
else: |
|
cfg[k] = kwargs[k] |
|
|
|
|
|
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size |
|
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
choose_device(cfg) |
|
cfg.ddp = cfg.world_size != 1 |
|
if cfg.ddp: |
|
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} |
|
cfg.gradient_accumulation_steps = ( |
|
cfg.gradient_accumulation_steps // cfg.world_size |
|
) |
|
setup_wandb_env_vars(cfg) |
|
|
|
|
|
model, tokenizer, lora_config = load_model( |
|
cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter |
|
) |
|
|
|
if "inference" in kwargs: |
|
do_inference(cfg, model, tokenizer) |
|
return |
|
|
|
if cfg.dataset_prepared_path and any(Path(cfg.dataset_prepared_path).glob("*")): |
|
print("Loading prepared dataset from disk...") |
|
dataset = load_from_disk(cfg.datasets) |
|
print("Prepared dataset loaded from disk...") |
|
else: |
|
datasets = [] |
|
for d in cfg.datasets: |
|
ds: IterableDataset = load_dataset( |
|
"json", data_files=d.path, streaming=True, split=None |
|
) |
|
|
|
if d.type == "alpaca": |
|
ds_strategy = AlpacaPromptTokenizingStrategy( |
|
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len |
|
) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) |
|
datasets.append(ds_wrapper) |
|
elif d.type == "gpteacher": |
|
ds_strategy = GPTeacherPromptTokenizingStrategy( |
|
GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len |
|
) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) |
|
datasets.append(ds_wrapper) |
|
elif d.type == "sharegpt": |
|
ds_strategy = ShareGPTPromptTokenizingStrategy( |
|
ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len |
|
) |
|
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"]) |
|
datasets.append(ds_wrapper) |
|
constant_len_dataset = ConstantLengthDataset( |
|
tokenizer, datasets, seq_length=cfg.sequence_len |
|
) |
|
dataset = Dataset.from_list( |
|
[_ for _ in constant_len_dataset] |
|
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42) |
|
|
|
print("Saving prepared dataset to disk...") |
|
if cfg.dataset_prepared_path: |
|
dataset.save_to_disk(cfg.dataset_prepared_path) |
|
else: |
|
dataset.save_to_disk("data/last_run") |
|
|
|
train_dataset = dataset["train"] |
|
eval_dataset = dataset["test"] |
|
|
|
if cfg.debug: |
|
check_dataset_labels( |
|
train_dataset.select([random.randrange(0, len(train_dataset) - 1)]), |
|
tokenizer, |
|
) |
|
|
|
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer) |
|
|
|
model.config.use_cache = False |
|
|
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
|
|
lora_config.save_pretrained(cfg.output_dir) |
|
|
|
|
|
signal.signal( |
|
signal.SIGINT, |
|
lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)), |
|
) |
|
|
|
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint) |
|
|
|
|
|
model.save_pretrained(cfg.output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(train) |
|
|