File size: 10,283 Bytes
bf0e217
 
 
d572e10
bf0e217
 
95ac724
bf0e217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ac724
 
 
 
 
 
 
 
 
 
 
 
 
d572e10
95ac724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0e217
95ac724
 
 
bf0e217
 
 
 
95ac724
 
 
 
 
bf0e217
95ac724
 
 
 
 
 
 
 
 
bf0e217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ac724
bf0e217
95ac724
 
bf0e217
 
 
 
 
 
95ac724
bf0e217
95ac724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0e217
 
95ac724
bf0e217
95ac724
 
 
bf0e217
 
95ac724
 
 
 
 
 
bf0e217
 
 
d572e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import re
from datetime import datetime
import PyPDF2
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import gradio as gr
from docxtpl import DocxTemplate

# Set your API key for Groq
os.environ["GROQ_API_KEY"] = "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"
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# --- PDF/Text Extraction Functions --- #
def extract_text_from_file(file_path):
    """Extracts text from PDF or TXT files based on file extension."""
    if file_path.endswith('.pdf'):
        return extract_text_from_pdf(file_path)
    elif file_path.endswith('.txt'):
        return extract_text_from_txt(file_path)
    else:
        raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")

def extract_text_from_pdf(pdf_file_path):
    """Extracts text from a PDF file."""
    with open(pdf_file_path, 'rb') as pdf_file:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
    return text

def extract_text_from_txt(txt_file_path):
    """Extracts text from a .txt file."""
    with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
        return txt_file.read()

# --- Skill Extraction with Llama Model --- #
def extract_skills_llama(text):
    """Extracts skills from the text using the Llama model via Groq API."""
    try:
        response = client.chat.completions.create(
            messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}],
            model="llama3-70b-8192",
        )
        skills = response.choices[0].message.content.split(', ')  # Expecting a comma-separated list
        return skills
    except Exception as e:
        raise RuntimeError(f"Error during skill extraction: {e}")

# --- Qualification and Experience Extraction --- #
def extract_qualifications(text):
    """Extracts qualifications from text (e.g., degrees, certifications)."""
    qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE)
    return qualifications if qualifications else ['No specific qualifications found']

def extract_experience(text):
    """Extracts years of experience from the text."""
    experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE)
    job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE)
    experience_years = [int(year[0]) for year in experience_years]
    return experience_years, job_titles

# --- Semantic Similarity Calculation --- #
def calculate_semantic_similarity(text1, text2):
    """Calculates semantic similarity using a sentence transformer model and returns the score as a percentage."""
    model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
    embeddings1 = model.encode(text1, convert_to_tensor=True)
    embeddings2 = model.encode(text2, convert_to_tensor=True)
    similarity_score = util.pytorch_cos_sim(embeddings1, embeddings2).item()
    
    # Convert similarity score to percentage
    similarity_percentage = similarity_score * 100
    return similarity_percentage

# --- Thresholds --- #
def categorize_similarity(score):
    """Categorizes the similarity score into thresholds for better insights."""
    if score >= 80:
        return "High Match"
    elif score >= 50:
        return "Moderate Match"
    else:
        return "Low Match"

# --- Communication Generation with Enhanced Response --- #
def communication_generator(resume_skills, job_description_skills, skills_similarity, qualifications_similarity, experience_similarity, max_length=200):
    """Generates a more detailed communication response based on similarity scores."""
    model_name = "google/flan-t5-base"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

    # Assess candidate fit based on similarity scores
    fit_status = "strong fit" if skills_similarity >= 80 and qualifications_similarity >= 80 and experience_similarity >= 80 else \
                 "moderate fit" if skills_similarity >= 50 else "weak fit"
    
    # Create a detailed communication message based on match levels
    message = (
        f"After a detailed analysis of the candidate's resume, we found the following insights:\n\n"
        f"- **Skills Match**: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})\n"
        f"- **Qualifications Match**: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})\n"
        f"- **Experience Match**: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})\n\n"
        f"The overall assessment indicates that the candidate is a {fit_status} for the role. "
        f"Skills such as {', '.join(resume_skills)} align {categorize_similarity(skills_similarity).lower()} with the job's requirements of {', '.join(job_description_skills)}. "
        f"In terms of qualifications and experience, the candidate shows a {categorize_similarity(qualifications_similarity).lower()} match with the role's needs. "
        f"Based on these findings, we believe the candidate could potentially excel in the role, "
        f"but additional evaluation or interviews are recommended for further clarification."
    )

    inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
    response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)

    return tokenizer.decode(response[0], skip_special_tokens=True)

# --- Sentiment Analysis --- #
def sentiment_analysis(text):
    """Analyzes the sentiment of the text."""
    model_name = "mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)

    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
        predicted_sentiment = torch.argmax(outputs.logits).item()
    return ["Negative", "Neutral", "Positive"][predicted_sentiment]

# --- Updated Resume Analysis Function --- #
def analyze_resume(resume_file, job_description_file):
    """Analyzes the resume and job description, returning similarity score, skills, qualifications, and experience matching."""
    # Extract resume and job description text
    try:
        resume_text = extract_text_from_file(resume_file.name)
        job_description_text = extract_text_from_file(job_description_file.name)
    except ValueError as ve:
        return str(ve)

    # Extract skills, qualifications, and experience
    resume_skills = extract_skills_llama(resume_text)
    job_description_skills = process_job_description(job_description_text)
    resume_qualifications = extract_qualifications(resume_text)
    job_description_qualifications = extract_qualifications(job_description_text)
    resume_experience, resume_job_titles = extract_experience(resume_text)
    job_description_experience, job_description_titles = extract_experience(job_description_text)

    # Calculate semantic similarity for different sections in percentages
    skills_similarity = calculate_semantic_similarity(' '.join(resume_skills), ' '.join(job_description_skills))
    qualifications_similarity = calculate_semantic_similarity(' '.join(resume_qualifications), ' '.join(job_description_qualifications))
    experience_similarity = calculate_semantic_similarity(' '.join([str(e) for e in resume_experience]), ' '.join([str(e) for e in job_description_experience]))

    # Generate a communication response based on the similarity percentages
    communication_response = communication_generator(
        resume_skills, job_description_skills, 
        skills_similarity, qualifications_similarity, experience_similarity
    )

    # Perform Sentiment Analysis
    sentiment = sentiment_analysis(resume_text)

    # Return the results including thresholds and percentage scores
    return (
        f"Skills Similarity: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})",
        f"Qualifications Similarity: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})",
        f"Experience Similarity: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})",
        communication_response,
        f"Sentiment: {sentiment}",
        f"Resume Skills: {', '.join(resume_skills)}",
        f"Job Description Skills: {', '.join(job_description_skills)}",
        f"Resume Qualifications: {', '.join(resume_qualifications)}",
        f"Job Description Qualifications: {', '.join(job_description_qualifications)}",
        f"Resume Experience: {', '.join([f'{y} years' for y, _ in resume_experience])}",
        f"Job Description Experience: {', '.join([f'{y} years' for y, _ in job_description_experience])}"
    )

# --- Gradio Interface --- #
def main():
    """Runs the Gradio application for resume analysis."""
    interface = gr.Interface(
        fn=analyze_resume,
        inputs=[gr.File(label="Upload Resume (PDF/TXT)"), gr.File(label="Upload Job Description (PDF/TXT)")],
        outputs=[
            gr.Textbox(label="Skills Similarity"),
            gr.Textbox(label="Qualifications Similarity"),
            gr.Textbox(label="Experience Similarity"),
            gr.Textbox(label="Communication Response"),
            gr.Textbox(label="Sentiment Analysis"),
            gr.Textbox(label="Resume Skills"),
            gr.Textbox(label="Job Description Skills"),
            gr.Textbox(label="Resume Qualifications"),
            gr.Textbox(label="Job Description Qualifications"),
            gr.Textbox(label="Resume Experience"),
            gr.Textbox(label="Job Description Experience")
        ],
        title="Resume and Job Description Analysis",
        description="Analyze a resume against a job description to evaluate skills, qualifications, experience, and generate communication insights."
    )

    interface.launch()

if __name__ == "__main__":
    main()