File size: 9,416 Bytes
0c83406 a5eed04 0c83406 a822226 954f9a3 a5eed04 0c83406 954f9a3 a5eed04 0c83406 a822226 0c83406 954f9a3 0c83406 a822226 0c83406 a822226 0c83406 a822226 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 ba1943f c0e580a d340330 ba1943f c0e580a a5eed04 c0e580a 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 0c83406 a5eed04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from __future__ import annotations
import pathlib
import gradio as gr
import torch
import os
import PIL
import torchvision.transforms as T
import torch.nn.functional as F
import numpy as np
import cv2
import matplotlib.pyplot as plt
from typing import Any
from transformers import (
CLIPTextModelWithProjection,
CLIPVisionModelWithProjection,
CLIPImageProcessor,
CLIPTokenizer,
)
from transformers import CLIPTokenizer
from src.priors.lambda_prior_transformer import (
PriorTransformer,
) # original huggingface prior transformer without time conditioning
from src.pipelines.pipeline_kandinsky_subject_prior import KandinskyPriorPipeline
from diffusers import DiffusionPipeline
from PIL import Image
__device__ = "cpu"
__dtype__ = torch.float32
if torch.cuda.is_available():
__device__ = "cuda"
__dtype__ = torch.float16
class Model:
def __init__(self):
self.device = __device__
self.text_encoder = (
CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
projection_dim=1280,
torch_dtype=__dtype__,
)
.eval()
.requires_grad_(False)
).to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
)
prior = PriorTransformer.from_pretrained(
"ECLIPSE-Community/Lambda-ECLIPSE-Prior-v1.0",
torch_dtype=__dtype__,
)
self.pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior",
prior=prior,
torch_dtype=__dtype__,
).to(self.device)
self.pipe = DiffusionPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=__dtype__
).to(self.device)
def inference(self, raw_data, seed):
generator = torch.Generator(device="cuda").manual_seed(seed)
image_emb, negative_image_emb = self.pipe_prior(
raw_data=raw_data,
generator=generator,
).to_tuple()
image = self.pipe(
image_embeds=image_emb,
negative_image_embeds=negative_image_emb,
num_inference_steps=50,
guidance_scale=7.5,
generator=generator,
).images[0]
return image
def run(
self,
image: dict[str, PIL.Image.Image],
keyword: str,
image2: dict[str, PIL.Image.Image],
keyword2: str,
text: str,
seed: int,
):
sub_imgs = [image["composite"]]
sun_keywords = [keyword]
if keyword2 and keyword2 != "no subject":
sun_keywords.append(keyword2)
if image2:
sub_imgs.append(image2["composite"])
raw_data = {
"prompt": text,
"subject_images": sub_imgs,
"subject_keywords": sun_keywords,
}
image = self.inference(raw_data, seed)
return image
def create_demo():
USAGE = """## To run the demo, you should:
1. Upload your image.
2. <span style='color: red;'>**Upload a masked subject image with white blankspace or whiten out manually using brush tool.**
3. Input a Keyword i.e. 'Dog'
4. For MultiSubject personalization,
4-1. Upload another image.
4-2. Input the Keyword i.e. 'Sunglasses'
3. Input proper text prompts, such as "A photo of Dog" or "A Dog wearing sunglasses", Please use the same keyword in the prompt.
4. Click the Run button.
"""
model = Model()
with gr.Blocks() as demo:
gr.HTML(
"""<h1 style="text-align: center;"><b><i>λ-ECLIPSE</i>: Multi-Concept Personalized Text-to-Image Diffusion Models by Leveraging CLIP Latent Space</b></h1>
<h1 style='text-align: center;'><a href='https://eclipse-t2i.github.io/Lambda-ECLIPSE/'>Project Page</a> | <a href='#'>Paper</a> </h1>
<p style="text-align: center; color: red;">This demo is currently hosted on either a small GPU or CPU. We will soon provide high-end GPU support.</p>
<p style="text-align: center; color: red;">Please follow the instructions from here to run it locally: <a href="https://github.com/eclipse-t2i/lambda-eclipse-inference">GitHub Inference Code</a></p>
<a href="https://colab.research.google.com/drive/1VcqzXZmilntec3AsIyzCqlstEhX4Pa1o?usp=sharing" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
"""
)
gr.Markdown(USAGE)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(
"Upload your first masked subject image or mask out marginal space"
)
image = gr.ImageEditor(
label="Input",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
)
keyword = gr.Text(
label="Keyword",
placeholder='e.g. "Dog", "Goofie"',
info="Keyword for first subject",
)
gr.Markdown(
"For Multi-Subject generation : Upload your second masked subject image or mask out marginal space"
)
image2 = gr.ImageEditor(
label="Input",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
)
keyword2 = gr.Text(
label="Keyword",
placeholder='e.g. "Sunglasses", "Grand Canyon"',
info="Keyword for second subject",
)
prompt = gr.Text(
label="Prompt",
placeholder='e.g. "A photo of dog", "A dog wearing sunglasses"',
info="Keep the keywords used previously in the prompt",
)
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
inputs = [
image,
keyword,
image2,
keyword2,
prompt,
]
gr.Examples(
examples=[
[
os.path.join(os.path.dirname(__file__), "./assets/luffy.jpg"),
"luffy",
os.path.join(os.path.dirname(__file__), "./assets/white.jpg"),
"no subject",
"luffy holding a sword",
],
[
os.path.join(os.path.dirname(__file__), "./assets/luffy.jpg"),
"luffy",
os.path.join(os.path.dirname(__file__), "./assets/white.jpg"),
"no subject",
"luffy in the living room",
],
[
os.path.join(os.path.dirname(__file__), "./assets/teapot.jpg"),
"teapot",
os.path.join(os.path.dirname(__file__), "./assets/white.jpg"),
"no subject",
"teapot on a cobblestone street",
],
[
os.path.join(os.path.dirname(__file__), "./assets/trex.jpg"),
"trex",
os.path.join(os.path.dirname(__file__), "./assets/white.jpg"),
"no subject",
"trex near a river",
],
[
os.path.join(os.path.dirname(__file__), "./assets/cat.png"),
"cat",
os.path.join(
os.path.dirname(__file__), "./assets/blue_sunglasses.png"
),
"glasses",
"A cat wearing glasses on a snowy field",
],
[
os.path.join(os.path.dirname(__file__), "./assets/statue.jpg"),
"statue",
os.path.join(os.path.dirname(__file__), "./assets/toilet.jpg"),
"toilet",
"statue sitting on a toilet",
],
[
os.path.join(os.path.dirname(__file__), "./assets/teddy.jpg"),
"teddy",
os.path.join(os.path.dirname(__file__), "./assets/luffy_hat.jpg"),
"hat",
"a teddy wearing the hat at a beach",
],
[
os.path.join(os.path.dirname(__file__), "./assets/chair.jpg"),
"chair",
os.path.join(os.path.dirname(__file__), "./assets/table.jpg"),
"table",
"a chair and table in living room",
],
],
inputs=inputs,
fn=model.run,
outputs=result,
)
run_button.click(fn=model.run, inputs=inputs, outputs=result)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue(max_size=20).launch()
|