llama.cpp / app.py
Elijahbodden's picture
Update app.py
db111cc verified
raw
history blame
3.52 kB
# ADD DISCLAIMERS
# AND LOGGING
import gradio as gr
import os
os.system("apt install libopenblas-dev")
os.system("make clean && LLAMA_OPENBLAS=1 make")
os.system('CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python transformers')
from llama_cpp import Llama
from transformers import AutoTokenizer
model_id = "Elijahbodden/eliGPTv1.1"
# MODEL
model = Llama.from_pretrained(
repo_id=model_id,
filename="eliGPTv1.1-unsloth.Q5_K_M.gguf",
verbose=True,
n_threads = 2,
n_threads_batch = 2,
n_ctx=8192,
)
# TOKENIZER AND TEMPLATE
tokenizer = AutoTokenizer.from_pretrained(model_id)
sys_prompt = """SUMMARY - ELIJAH:
Age: 16
Interests: space flight, cybernetics, consciousness, philosophy, psychonautism, biotech, AI
Likes: thinking and learning, building stuff, interesting conversations, red hot chili peppers and techno, humanism
Traits: incredibly intelligent, funny, interesting, caffeine fiend, very ambitious, militant atheist, self-taught/homeschooled, casual
Aspirations: creating transhumanist utopia, understanding the universe more, becoming smarter and better\n"""
your_name = "elijah"
custom_template = \
f"{{% if {'sys_prompt' in locals()} %}}"\
"{{ '<|im_start|>system\n" + sys_prompt + "<|im_end|>\n' }}"\
"{% endif %}"\
"{% for message in messages %}"\
"{% if message['role'] == 'user' %}"\
"{{'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'}}"\
"{% elif message['role'] == 'assistant' %}"\
"{{'<|im_start|>" + your_name + "\n' + message['content'] + eos_token + '<|im_end|>\n' }}"\
"{% else %}"\
"{{ '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' }}"\
"{% endif %}"\
"{% endfor %}"\
"{{ '<|im_start|>" + your_name + "\n' }}"\
tokenizer.chat_template = custom_template
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
mirostat_tau,
mirostat_eta,
):
for val in history:
if val[0]:
messages.append({"from": "human", "content": val[0]})
if val[1]:
messages.append({"from": "gpt", "content": val[1]})
messages.append({"from": "human", "content": message})
response = ""
tokenizer.apply_chat_template(messages, tokenize=False)
for message in model.create_completion(
convo,
temperature=0.75,
stream=True,
stop=["<|im_end|>"],
mirostat_mode=1,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
max_tokens=128
):
token = message["choices"][0]["text"]
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.0,
maximum=10.0,
value=3.0,
step=0.5,
label="Mirostat tau",
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.01,
label="Mirostat eta",
),
],
)
if __name__ == "__main__":
demo.launch()