Spaces:
Build error
Build error
""" Vision Transformer (ViT) in PyTorch | |
A PyTorch implement of Vision Transformers as described in | |
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929 | |
The official jax code is released and available at https://github.com/google-research/vision_transformer | |
Status/TODO: | |
* Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights. | |
* Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches. | |
* Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code. | |
* Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future. | |
Acknowledgments: | |
* The paper authors for releasing code and weights, thanks! | |
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out | |
for some einops/einsum fun | |
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT | |
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import warnings | |
import math | |
import torch | |
from functools import partial | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', | |
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), | |
**kwargs | |
} | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return 'p={}'.format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., | |
proj_drop=0., window_size=None, attn_head_dim=None): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
if window_size: | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = \ | |
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index) | |
# trunc_normal_(self.relative_position_bias_table, std=.0) | |
else: | |
self.window_size = None | |
self.relative_position_bias_table = None | |
self.relative_position_index = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, rel_pos_bias=None, training_window_size=None): | |
B, N, C = x.shape | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | |
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
if self.relative_position_bias_table is not None: | |
if training_window_size == self.window_size: | |
relative_position_bias = \ | |
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
else: | |
training_window_size = tuple(training_window_size.tolist()) | |
new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 | |
# new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok | |
new_relative_position_bias_table = F.interpolate( | |
self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, | |
2 * self.window_size[0] - 1, | |
2 * self.window_size[1] - 1), | |
size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', | |
align_corners=False) | |
new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, | |
new_num_relative_distance - 3).permute( | |
1, 0) | |
new_relative_position_bias_table = torch.cat( | |
[new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(training_window_size[0]) | |
coords_w = torch.arange(training_window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += training_window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 | |
relative_position_index = \ | |
torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, | |
dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = new_num_relative_distance - 3 | |
relative_position_index[0:, 0] = new_num_relative_distance - 2 | |
relative_position_index[0, 0] = new_num_relative_distance - 1 | |
relative_position_bias = \ | |
new_relative_position_bias_table[relative_position_index.view(-1)].view( | |
training_window_size[0] * training_window_size[1] + 1, | |
training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if rel_pos_bias is not None: | |
attn = attn + rel_pos_bias | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, | |
window_size=None, attn_head_dim=None): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if init_values is not None: | |
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
def forward(self, x, rel_pos_bias=None, training_window_size=None): | |
if self.gamma_1 is None: | |
x = x + self.drop_path( | |
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, | |
training_window_size=training_window_size)) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.num_patches_w = self.patch_shape[0] | |
self.num_patches_h = self.patch_shape[1] | |
# the so-called patch_shape is the patch shape during pre-training | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x, position_embedding=None, **kwargs): | |
# FIXME look at relaxing size constraints | |
# assert H == self.img_size[0] and W == self.img_size[1], \ | |
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x) | |
Hp, Wp = x.shape[2], x.shape[3] | |
if position_embedding is not None: | |
# interpolate the position embedding to the corresponding size | |
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3, | |
1, 2) | |
position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic') | |
x = x + position_embedding | |
x = x.flatten(2).transpose(1, 2) | |
return x, (Hp, Wp) | |
class HybridEmbed(nn.Module): | |
""" CNN Feature Map Embedding | |
Extract feature map from CNN, flatten, project to embedding dim. | |
""" | |
def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768): | |
super().__init__() | |
assert isinstance(backbone, nn.Module) | |
img_size = to_2tuple(img_size) | |
self.img_size = img_size | |
self.backbone = backbone | |
if feature_size is None: | |
with torch.no_grad(): | |
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature | |
# map for all networks, the feature metadata has reliable channel and stride info, but using | |
# stride to calc feature dim requires info about padding of each stage that isn't captured. | |
training = backbone.training | |
if training: | |
backbone.eval() | |
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] | |
feature_size = o.shape[-2:] | |
feature_dim = o.shape[1] | |
backbone.train(training) | |
else: | |
feature_size = to_2tuple(feature_size) | |
feature_dim = self.backbone.feature_info.channels()[-1] | |
self.num_patches = feature_size[0] * feature_size[1] | |
self.proj = nn.Linear(feature_dim, embed_dim) | |
def forward(self, x): | |
x = self.backbone(x)[-1] | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class RelativePositionBias(nn.Module): | |
def __init__(self, window_size, num_heads): | |
super().__init__() | |
self.window_size = window_size | |
self.num_heads = num_heads | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = \ | |
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index) | |
# trunc_normal_(self.relative_position_bias_table, std=.02) | |
def forward(self, training_window_size): | |
if training_window_size == self.window_size: | |
relative_position_bias = \ | |
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
else: | |
training_window_size = tuple(training_window_size.tolist()) | |
new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3 | |
# new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok | |
new_relative_position_bias_table = F.interpolate( | |
self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads, | |
2 * self.window_size[0] - 1, | |
2 * self.window_size[1] - 1), | |
size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic', | |
align_corners=False) | |
new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads, | |
new_num_relative_distance - 3).permute( | |
1, 0) | |
new_relative_position_bias_table = torch.cat( | |
[new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(training_window_size[0]) | |
coords_w = torch.arange(training_window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += training_window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1 | |
relative_position_index = \ | |
torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2, | |
dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = new_num_relative_distance - 3 | |
relative_position_index[0:, 0] = new_num_relative_distance - 2 | |
relative_position_index[0, 0] = new_num_relative_distance - 1 | |
relative_position_bias = \ | |
new_relative_position_bias_table[relative_position_index.view(-1)].view( | |
training_window_size[0] * training_window_size[1] + 1, | |
training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
return relative_position_bias | |
class BEiT(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, | |
img_size=[224, 224], | |
patch_size=16, | |
in_chans=3, | |
num_classes=80, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
hybrid_backbone=None, | |
norm_layer=None, | |
init_values=None, | |
use_abs_pos_emb=False, | |
use_rel_pos_bias=False, | |
use_shared_rel_pos_bias=False, | |
use_checkpoint=True, | |
pretrained=None, | |
out_features=None, | |
): | |
super(BEiT, self).__init__() | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.use_checkpoint = use_checkpoint | |
if hybrid_backbone is not None: | |
self.patch_embed = HybridEmbed( | |
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) | |
else: | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.out_features = out_features | |
self.out_indices = [int(name[5:]) for name in out_features] | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
if use_abs_pos_emb: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
else: | |
self.pos_embed = None | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
self.use_shared_rel_pos_bias = use_shared_rel_pos_bias | |
if use_shared_rel_pos_bias: | |
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) | |
else: | |
self.rel_pos_bias = None | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.use_rel_pos_bias = use_rel_pos_bias | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) | |
for i in range(depth)]) | |
# trunc_normal_(self.mask_token, std=.02) | |
if patch_size == 16: | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
# nn.SyncBatchNorm(embed_dim), | |
nn.BatchNorm2d(embed_dim), | |
nn.GELU(), | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
) | |
self.fpn2 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
) | |
self.fpn3 = nn.Identity() | |
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) | |
elif patch_size == 8: | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), | |
) | |
self.fpn2 = nn.Identity() | |
self.fpn3 = nn.Sequential( | |
nn.MaxPool2d(kernel_size=2, stride=2), | |
) | |
self.fpn4 = nn.Sequential( | |
nn.MaxPool2d(kernel_size=4, stride=4), | |
) | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
self.fix_init_weight() | |
def fix_init_weight(self): | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
''' | |
def init_weights(self): | |
"""Initialize the weights in backbone. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
logger = get_root_logger() | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
self.fix_init_weight() | |
if self.init_cfg is None: | |
logger.warn(f'No pre-trained weights for ' | |
f'{self.__class__.__name__}, ' | |
f'training start from scratch') | |
else: | |
assert 'checkpoint' in self.init_cfg, f'Only support ' \ | |
f'specify `Pretrained` in ' \ | |
f'`init_cfg` in ' \ | |
f'{self.__class__.__name__} ' | |
logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") | |
load_checkpoint(self, | |
filename=self.init_cfg['checkpoint'], | |
strict=False, | |
logger=logger, | |
beit_spec_expand_rel_pos = self.use_rel_pos_bias, | |
) | |
''' | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward_features(self, x): | |
B, C, H, W = x.shape | |
x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None) | |
# Hp, Wp are HW for patches | |
batch_size, seq_len, _ = x.size() | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
if self.pos_embed is not None: | |
cls_tokens = cls_tokens + self.pos_embed[:, :1, :] | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.pos_drop(x) | |
features = [] | |
training_window_size = torch.tensor([Hp, Wp]) | |
rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None | |
for i, blk in enumerate(self.blocks): | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size) | |
else: | |
x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size) | |
if i in self.out_indices: | |
xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) | |
features.append(xp.contiguous()) | |
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] | |
for i in range(len(features)): | |
features[i] = ops[i](features[i]) | |
feat_out = {} | |
for name, value in zip(self.out_features, features): | |
feat_out[name] = value | |
return feat_out | |
def forward(self, x): | |
x = self.forward_features(x) | |
return x | |
def beit_base_patch16(pretrained=False, **kwargs): | |
model = BEiT( | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
init_values=None, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def beit_large_patch16(pretrained=False, **kwargs): | |
model = BEiT( | |
patch_size=16, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
init_values=None, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def dit_base_patch16(pretrained=False, **kwargs): | |
model = BEiT( | |
patch_size=16, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
init_values=0.1, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def dit_large_patch16(pretrained=False, **kwargs): | |
model = BEiT( | |
patch_size=16, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
init_values=1e-5, | |
**kwargs) | |
model.default_cfg = _cfg() | |
return model | |
if __name__ == '__main__': | |
model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True) | |
model = model.to("cuda:0") | |
input1 = torch.rand(2, 3, 512, 762).to("cuda:0") | |
input2 = torch.rand(2, 3, 800, 1200).to("cuda:0") | |
input3 = torch.rand(2, 3, 720, 1000).to("cuda:0") | |
output1 = model(input1) | |
output2 = model(input2) | |
output3 = model(input3) | |
print("all done") | |