|
import tensorflow as tf |
|
from tensorflow.keras import layers |
|
from tensorflow.keras.models import Model |
|
|
|
class ClassToken(layers.Layer): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def build(self, input_shape): |
|
|
|
w_init = tf.random_normal_initializer() |
|
self.w = tf.Variable( |
|
initial_value = w_init(shape=(1, 1, input_shape[-1]), dtype=tf.float32), |
|
trainable = True |
|
) |
|
|
|
def call(self, inputs): |
|
batch_size = tf.shape(inputs)[0] |
|
hidden_dim = self.w.shape[-1] |
|
|
|
|
|
cls = tf.broadcast_to(self.w, [batch_size, 1, hidden_dim]) |
|
|
|
cls = tf.cast(cls, dtype=inputs.dtype) |
|
return cls |
|
|
|
|
|
def mlp(x, cf): |
|
x = layers.Dense(cf['mlp_dim'], activation='gelu')(x) |
|
x = layers.Dropout(cf['dropout_rate'])(x) |
|
x = layers.Dense(cf['hidden_dim'])(x) |
|
x = layers.Dropout(cf['dropout_rate'])(x) |
|
return x |
|
|
|
def transformer_encoder(x, cf): |
|
skip_1 = x |
|
x = layers.LayerNormalization()(x) |
|
x = layers.MultiHeadAttention(num_heads=cf['num_heads'], key_dim=cf['hidden_dim'])(x,x) |
|
x = layers.Add()([x, skip_1]) |
|
|
|
skip_2 = x |
|
x = layers.LayerNormalization()(x) |
|
x = mlp(x, cf) |
|
x = layers.Add()([x, skip_2]) |
|
|
|
return x |
|
|
|
|
|
def resnet_block(x, filters, strides=1): |
|
identity = x |
|
|
|
x = layers.Conv2D(filters, kernel_size=5, strides=strides, padding='same')(x) |
|
x = layers.BatchNormalization()(x) |
|
x = layers.Activation('relu')(x) |
|
|
|
x = layers.Conv2D(filters, kernel_size=5, strides=1, padding='same')(x) |
|
x = layers.BatchNormalization()(x) |
|
|
|
if strides > 1: |
|
identity = layers.Conv2D(filters, kernel_size=1, strides=strides, padding='same')(identity) |
|
identity = layers.BatchNormalization()(identity) |
|
|
|
x = layers.Add()([x, identity]) |
|
x = layers.Activation('relu')(x) |
|
return x |
|
|
|
|
|
def build_resnet(input_shape): |
|
|
|
x = layers.Conv2D(32, kernel_size=7, strides=2, padding='same')(input_shape) |
|
x = layers.BatchNormalization()(x) |
|
x = layers.Activation('relu')(x) |
|
x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x) |
|
|
|
x = resnet_block(x, filters=32) |
|
x = resnet_block(x, filters=32) |
|
|
|
x = resnet_block(x, filters=64, strides=2) |
|
x = resnet_block(x, filters=64) |
|
|
|
x = resnet_block(x, filters=128, strides=2) |
|
x = resnet_block(x, filters=128) |
|
|
|
x = resnet_block(x, filters=256, strides=2) |
|
x = resnet_block(x, filters=256) |
|
|
|
return x |
|
|
|
|
|
def CNN_ViT(hp): |
|
input_shape = (hp['image_size'], hp['image_size'], hp['num_channels']) |
|
inputs = layers.Input(input_shape) |
|
print(inputs.shape) |
|
output = build_resnet(inputs) |
|
print(output.shape) |
|
|
|
patch_embed = layers.Conv2D(hp['hidden_dim'], kernel_size=(hp['patch_size']), padding='same')(output) |
|
print(patch_embed.shape) |
|
_, h, w, f = output.shape |
|
patch_embed = layers.Reshape((h*w,f))(output) |
|
|
|
|
|
positions = tf.range(start=0, limit=hp['num_patches'], delta=1) |
|
pos_embed = layers.Embedding(input_dim=hp['num_patches'], output_dim=hp['hidden_dim'])(positions) |
|
|
|
print(f"patch embedding : {patch_embed.shape}") |
|
print(f"position embeding : {pos_embed.shape}") |
|
|
|
embed = patch_embed + pos_embed |
|
|
|
|
|
token = ClassToken()(embed) |
|
x = layers.Concatenate(axis=1)([token, embed]) |
|
|
|
|
|
for _ in range(hp['num_layers']): |
|
x = transformer_encoder(x, hp) |
|
|
|
|
|
x = layers.LayerNormalization()(x) |
|
x = x[:, 0, :] |
|
x = layers.Dense(hp['num_classes'], activation='softmax')(x) |
|
|
|
model = Model(inputs, x) |
|
return model |
|
|
|
|