Ezi Ozoani
test upload
b69fb1e
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from os import mkdir
from os.path import exists, isdir
from pathlib import Path
# #! pip install streamlit
import streamlit as st
# +
# #! pip install datasets
# #! pip install powerlaw
# -
from data_measurements import dataset_statistics, dataset_utils
from data_measurements import streamlit_utils as st_utils
logs = logging.getLogger(__name__)
logs.setLevel(logging.WARNING)
logs.propagate = False
if not logs.handlers:
Path('./log_files').mkdir(exist_ok=True)
# Logging info to log file
file = logging.FileHandler("./log_files/app.log")
fileformat = logging.Formatter("%(asctime)s:%(message)s")
file.setLevel(logging.INFO)
file.setFormatter(fileformat)
# Logging debug messages to stream
stream = logging.StreamHandler()
streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
stream.setLevel(logging.WARNING)
stream.setFormatter(streamformat)
logs.addHandler(file)
logs.addHandler(stream)
st.set_page_config(
page_title="Demo to showcase dataset metrics",
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
layout="wide",
initial_sidebar_state="auto",
)
# colorblind-friendly colors
colors = [
"#332288",
"#117733",
"#882255",
"#AA4499",
"#CC6677",
"#44AA99",
"#DDCC77",
"#88CCEE",
]
CACHE_DIR = dataset_utils.CACHE_DIR
# String names we are using (not coming from the stored dataset).
OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD
OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD
TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD
EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD
LENGTH_FIELD = dataset_utils.LENGTH_FIELD
# TODO: Allow users to specify this.
_MIN_VOCAB_COUNT = 10
_SHOW_TOP_N_WORDS = 10
@st.cache(
hash_funcs={
dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path
},
allow_output_mutation=True,
)
def load_or_prepare(ds_args, show_embeddings, use_cache=False):
"""
Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if
a cache for those arguments is available, to load it from the cache.
Args:
ds_args (dict): the dataset arguments defined via the streamlit app GUI
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
use_cache (Bool) : whether the cache is used by default or not
Returns:
dstats: the computed dataset statistics (from the dataset_statistics class)
"""
if not isdir(CACHE_DIR):
logs.warning("Creating cache")
# We need to preprocess everything.
# This should eventually all go into a prepare_dataset CLI
mkdir(CACHE_DIR)
if use_cache:
logs.warning("Using cache")
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache)
logs.warning("Loading dataset")
dstats.load_or_prepare_dataset()
if show_embeddings:
logs.warning("Loading Embeddings")
dstats.load_or_prepare_embeddings()
logs.warning("Loading nPMI")
try:
dstats.load_or_prepare_npmi()
except:
logs.warning("Missing a cache for npmi")
return dstats
@st.cache(
hash_funcs={
dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path
},
allow_output_mutation=True,
)
def load_or_prepare_widgets(ds_args, show_embeddings, use_cache=False):
"""
Loader specifically for the widgets used in the app.
Args:
ds_args:
show_embeddings:
use_cache:
Returns:
"""
if use_cache:
logs.warning("Using cache")
if True:
#try:
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache)
# Don't recalculate; we're live
dstats.set_deployment(True)
# checks whether the cache_dir exists in deployment mode
# creates cache_dir if not and if in development mode
cache_dir_exists = dstats.check_cache_dir()
#except:
# logs.warning("We're screwed")
if cache_dir_exists:
try:
# We need to have the text_dset loaded for further load_or_prepare
dstats.load_or_prepare_dataset()
except:
logs.warning("Missing a cache for load or prepare dataset")
try:
# Header widget
dstats.load_or_prepare_dset_peek()
except:
logs.warning("Missing a cache for dset peek")
if show_embeddings:
try:
# Embeddings widget
dstats.load_or_prepare_embeddings()
except:
logs.warning("Missing a cache for embeddings")
try:
dstats.load_or_prepare_text_duplicates()
except:
logs.warning("Missing a cache for text duplicates")
try:
dstats.load_or_prepare_npmi()
except:
logs.warning("Missing a cache for npmi")
return dstats, cache_dir_exists
def show_column(dstats, ds_name_to_dict, show_embeddings, column_id):
"""
Function for displaying the elements in the right column of the streamlit app.
Args:
ds_name_to_dict (dict): the dataset name and options in dictionary form
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
column_id (str): what column of the dataset the analysis is done on
Returns:
The function displays the information using the functions defined in the st_utils class.
"""
# Note that at this point we assume we can use cache; default value is True.
# start showing stuff
title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {dstats.split_name} - {'-'.join(dstats.text_field)}"
st.markdown(title_str)
# Uses an interaction; handled a bit differently than other widgets.
logs.info("showing npmi widget")
st_utils.npmi_widget(dstats.npmi_stats, _MIN_VOCAB_COUNT, column_id)
if show_embeddings:
st_utils.expander_text_embeddings(
dstats.text_dset,
dstats.fig_tree,
dstats.node_list,
dstats.embeddings,
OUR_TEXT_FIELD,
column_id,
)
def main():
""" Sidebar description and selection """
ds_name_to_dict = dataset_utils.get_dataset_info_dicts()
st.title("Data Measurements Tool")
# Get the sidebar details
st_utils.sidebar_header()
# Set up naming, configs, and cache path.
compare_mode = st.sidebar.checkbox("Comparison mode")
# When not doing new development, use the cache.
use_cache = True
show_embeddings = st.sidebar.checkbox("Show text clusters")
# List of datasets for which embeddings are hard to compute:
if compare_mode:
logs.warning("Using Comparison Mode")
dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A")
dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B")
left_col, _, right_col = st.columns([10, 1, 10])
dstats_left, cache_exists_left = load_or_prepare_widgets(
dataset_args_left, show_embeddings, use_cache=use_cache
)
with left_col:
if cache_exists_left:
show_column(dstats_left, ds_name_to_dict, show_embeddings, " A")
else:
st.markdown("### Missing pre-computed data measures!")
st.write(dataset_args_left)
dstats_right, cache_exists_right = load_or_prepare_widgets(
dataset_args_right, show_embeddings, use_cache=use_cache
)
with right_col:
if cache_exists_right:
show_column(dstats_right, ds_name_to_dict, show_embeddings, " B")
else:
st.markdown("### Missing pre-computed data measures!")
st.write(dataset_args_right)
else:
logs.warning("Using Single Dataset Mode")
dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "")
dstats, cache_exists = load_or_prepare_widgets(dataset_args, show_embeddings, use_cache=use_cache)
if cache_exists:
show_column(dstats, ds_name_to_dict, show_embeddings, "")
else:
st.markdown("### Missing pre-computed data measures!")
st.write(dataset_args)
if __name__ == "__main__":
main()