Spaces:
Sleeping
Sleeping
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
from os import mkdir | |
from os.path import exists, isdir | |
from pathlib import Path | |
# #! pip install streamlit | |
import streamlit as st | |
# + | |
# #! pip install datasets | |
# #! pip install powerlaw | |
# - | |
from data_measurements import dataset_statistics, dataset_utils | |
from data_measurements import streamlit_utils as st_utils | |
logs = logging.getLogger(__name__) | |
logs.setLevel(logging.WARNING) | |
logs.propagate = False | |
if not logs.handlers: | |
Path('./log_files').mkdir(exist_ok=True) | |
# Logging info to log file | |
file = logging.FileHandler("./log_files/app.log") | |
fileformat = logging.Formatter("%(asctime)s:%(message)s") | |
file.setLevel(logging.INFO) | |
file.setFormatter(fileformat) | |
# Logging debug messages to stream | |
stream = logging.StreamHandler() | |
streamformat = logging.Formatter("[data_measurements_tool] %(message)s") | |
stream.setLevel(logging.WARNING) | |
stream.setFormatter(streamformat) | |
logs.addHandler(file) | |
logs.addHandler(stream) | |
st.set_page_config( | |
page_title="Demo to showcase dataset metrics", | |
page_icon="https://huggingface.co/front/assets/huggingface_logo.svg", | |
layout="wide", | |
initial_sidebar_state="auto", | |
) | |
# colorblind-friendly colors | |
colors = [ | |
"#332288", | |
"#117733", | |
"#882255", | |
"#AA4499", | |
"#CC6677", | |
"#44AA99", | |
"#DDCC77", | |
"#88CCEE", | |
] | |
CACHE_DIR = dataset_utils.CACHE_DIR | |
# String names we are using (not coming from the stored dataset). | |
OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD | |
OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD | |
TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD | |
EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD | |
LENGTH_FIELD = dataset_utils.LENGTH_FIELD | |
# TODO: Allow users to specify this. | |
_MIN_VOCAB_COUNT = 10 | |
_SHOW_TOP_N_WORDS = 10 | |
def load_or_prepare(ds_args, show_embeddings, use_cache=False): | |
""" | |
Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if | |
a cache for those arguments is available, to load it from the cache. | |
Args: | |
ds_args (dict): the dataset arguments defined via the streamlit app GUI | |
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset | |
use_cache (Bool) : whether the cache is used by default or not | |
Returns: | |
dstats: the computed dataset statistics (from the dataset_statistics class) | |
""" | |
if not isdir(CACHE_DIR): | |
logs.warning("Creating cache") | |
# We need to preprocess everything. | |
# This should eventually all go into a prepare_dataset CLI | |
mkdir(CACHE_DIR) | |
if use_cache: | |
logs.warning("Using cache") | |
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache) | |
logs.warning("Loading dataset") | |
dstats.load_or_prepare_dataset() | |
if show_embeddings: | |
logs.warning("Loading Embeddings") | |
dstats.load_or_prepare_embeddings() | |
logs.warning("Loading nPMI") | |
try: | |
dstats.load_or_prepare_npmi() | |
except: | |
logs.warning("Missing a cache for npmi") | |
return dstats | |
def load_or_prepare_widgets(ds_args, show_embeddings, use_cache=False): | |
""" | |
Loader specifically for the widgets used in the app. | |
Args: | |
ds_args: | |
show_embeddings: | |
use_cache: | |
Returns: | |
""" | |
if use_cache: | |
logs.warning("Using cache") | |
if True: | |
#try: | |
dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache) | |
# Don't recalculate; we're live | |
dstats.set_deployment(True) | |
# checks whether the cache_dir exists in deployment mode | |
# creates cache_dir if not and if in development mode | |
cache_dir_exists = dstats.check_cache_dir() | |
#except: | |
# logs.warning("We're screwed") | |
if cache_dir_exists: | |
try: | |
# We need to have the text_dset loaded for further load_or_prepare | |
dstats.load_or_prepare_dataset() | |
except: | |
logs.warning("Missing a cache for load or prepare dataset") | |
try: | |
# Header widget | |
dstats.load_or_prepare_dset_peek() | |
except: | |
logs.warning("Missing a cache for dset peek") | |
if show_embeddings: | |
try: | |
# Embeddings widget | |
dstats.load_or_prepare_embeddings() | |
except: | |
logs.warning("Missing a cache for embeddings") | |
try: | |
dstats.load_or_prepare_text_duplicates() | |
except: | |
logs.warning("Missing a cache for text duplicates") | |
try: | |
dstats.load_or_prepare_npmi() | |
except: | |
logs.warning("Missing a cache for npmi") | |
return dstats, cache_dir_exists | |
def show_column(dstats, ds_name_to_dict, show_embeddings, column_id): | |
""" | |
Function for displaying the elements in the right column of the streamlit app. | |
Args: | |
ds_name_to_dict (dict): the dataset name and options in dictionary form | |
show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset | |
column_id (str): what column of the dataset the analysis is done on | |
Returns: | |
The function displays the information using the functions defined in the st_utils class. | |
""" | |
# Note that at this point we assume we can use cache; default value is True. | |
# start showing stuff | |
title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {dstats.split_name} - {'-'.join(dstats.text_field)}" | |
st.markdown(title_str) | |
# Uses an interaction; handled a bit differently than other widgets. | |
logs.info("showing npmi widget") | |
st_utils.npmi_widget(dstats.npmi_stats, _MIN_VOCAB_COUNT, column_id) | |
if show_embeddings: | |
st_utils.expander_text_embeddings( | |
dstats.text_dset, | |
dstats.fig_tree, | |
dstats.node_list, | |
dstats.embeddings, | |
OUR_TEXT_FIELD, | |
column_id, | |
) | |
def main(): | |
""" Sidebar description and selection """ | |
ds_name_to_dict = dataset_utils.get_dataset_info_dicts() | |
st.title("Data Measurements Tool") | |
# Get the sidebar details | |
st_utils.sidebar_header() | |
# Set up naming, configs, and cache path. | |
compare_mode = st.sidebar.checkbox("Comparison mode") | |
# When not doing new development, use the cache. | |
use_cache = True | |
show_embeddings = st.sidebar.checkbox("Show text clusters") | |
# List of datasets for which embeddings are hard to compute: | |
if compare_mode: | |
logs.warning("Using Comparison Mode") | |
dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A") | |
dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B") | |
left_col, _, right_col = st.columns([10, 1, 10]) | |
dstats_left, cache_exists_left = load_or_prepare_widgets( | |
dataset_args_left, show_embeddings, use_cache=use_cache | |
) | |
with left_col: | |
if cache_exists_left: | |
show_column(dstats_left, ds_name_to_dict, show_embeddings, " A") | |
else: | |
st.markdown("### Missing pre-computed data measures!") | |
st.write(dataset_args_left) | |
dstats_right, cache_exists_right = load_or_prepare_widgets( | |
dataset_args_right, show_embeddings, use_cache=use_cache | |
) | |
with right_col: | |
if cache_exists_right: | |
show_column(dstats_right, ds_name_to_dict, show_embeddings, " B") | |
else: | |
st.markdown("### Missing pre-computed data measures!") | |
st.write(dataset_args_right) | |
else: | |
logs.warning("Using Single Dataset Mode") | |
dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "") | |
dstats, cache_exists = load_or_prepare_widgets(dataset_args, show_embeddings, use_cache=use_cache) | |
if cache_exists: | |
show_column(dstats, ds_name_to_dict, show_embeddings, "") | |
else: | |
st.markdown("### Missing pre-computed data measures!") | |
st.write(dataset_args) | |
if __name__ == "__main__": | |
main() | |