File size: 7,817 Bytes
5266581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import transformers
import torch
import torch.nn as nn
from torch.utils.data.sampler import RandomSampler
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.dataloader import DataLoader
from transformers.data.data_collator import DataCollator
from transformers.data.data_collator import DataCollatorWithPadding, InputDataClass
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from transformers import is_torch_tpu_available
import numpy as np

class MultitaskModel(transformers.PreTrainedModel):
    def __init__(self, encoder, taskmodels_dict):
        """
        Setting MultitaskModel up as a PretrainedModel allows us
        to take better advantage of Trainer features
        """
        super().__init__(transformers.PretrainedConfig())

        self.encoder = encoder
        self.taskmodels_dict = nn.ModuleDict(taskmodels_dict)

    @classmethod
    def create(cls, model_name, model_type_dict, model_config_dict):
        """
        This creates a MultitaskModel using the model class and config objects
        from single-task models. 

        We do this by creating each single-task model, and having them share
        the same encoder transformer.
        """
        shared_encoder = None
        taskmodels_dict = {}
        do = nn.Dropout(p=0.2)
        for task_name, model_type in model_type_dict.items():
            model = model_type.from_pretrained(
                model_name,
                config=model_config_dict[task_name],
            )
            if shared_encoder is None:
                shared_encoder = getattr(
                    model, cls.get_encoder_attr_name(model))
            else:
                setattr(model, cls.get_encoder_attr_name(
                    model), shared_encoder)
            taskmodels_dict[task_name] = model
        return cls(encoder=shared_encoder, taskmodels_dict=taskmodels_dict)

    @classmethod
    def get_encoder_attr_name(cls, model):
        """
        The encoder transformer is named differently in each model "architecture".
        This method lets us get the name of the encoder attribute
        """
        model_class_name = model.__class__.__name__
        if model_class_name.startswith("Bert"):
            return "bert"
        elif model_class_name.startswith("Roberta"):
            return "roberta"
        elif model_class_name.startswith("Albert"):
            return "albert"
        else:
            raise KeyError(f"Add support for new model {model_class_name}")

    def forward(self, task_name, **kwargs):
        return self.taskmodels_dict[task_name](**kwargs)

    def get_model(self, task_name):
        return self.taskmodels_dict[task_name]

class NLPDataCollator(DataCollatorWithPadding):  # DataCollatorWithPadding
    """
    Extending the existing DataCollator to work with NLP dataset batches
    """

    def collate_batch(self, features: List[Union[InputDataClass, Dict]]) -> Dict[str, torch.Tensor]:
        first = features[0]
        batch = None
        if isinstance(first, dict):
            # NLP data sets current works presents features as lists of dictionary
            # (one per example), so we  will adapt the collate_batch logic for that
            if "labels" in first and first["labels"] is not None:
                if first["labels"].dtype == torch.int64:
                    labels = torch.tensor([f["labels"]
                                           for f in features], dtype=torch.long)
                else:
                    labels = torch.tensor([f["labels"]
                                           for f in features], dtype=torch.float)
                batch = {"labels": labels}
            for k, v in first.items():
                if k != "labels" and v is not None and not isinstance(v, str):
                    batch[k] = torch.stack([f[k] for f in features])
            return batch
        else:
            # otherwise, revert to using the default collate_batch
            return DataCollatorWithPadding().collate_batch(features)


class StrIgnoreDevice(str):
    """
    This is a hack. The Trainer is going call .to(device) on every input
    value, but we need to pass in an additional `task_name` string.
    This prevents it from throwing an error
    """

    def to(self, device):
        return self


class DataLoaderWithTaskname:
    """
    Wrapper around a DataLoader to also yield a task name
    """

    def __init__(self, task_name, data_loader):
        self.task_name = task_name
        self.data_loader = data_loader

        self.batch_size = data_loader.batch_size
        self.dataset = data_loader.dataset

    def __len__(self):
        return len(self.data_loader)

    def __iter__(self):
        for batch in self.data_loader:
            batch["task_name"] = StrIgnoreDevice(self.task_name)
            yield batch


class MultitaskDataloader:
    """
    Data loader that combines and samples from multiple single-task
    data loaders.
    """

    def __init__(self, dataloader_dict):
        self.dataloader_dict = dataloader_dict
        self.num_batches_dict = {
            task_name: len(dataloader)
            for task_name, dataloader in self.dataloader_dict.items()
        }
        self.task_name_list = list(self.dataloader_dict)
        self.dataset = [None] * sum(
            len(dataloader.dataset)
            for dataloader in self.dataloader_dict.values()
        )

    def __len__(self):
        return sum(self.num_batches_dict.values())

    def __iter__(self):
        """
        For each batch, sample a task, and yield a batch from the respective
        task Dataloader.

        We use size-proportional sampling, but you could easily modify this
        to sample from some-other distribution.
        """
        task_choice_list = []
        for i, task_name in enumerate(self.task_name_list):
            task_choice_list += [i] * self.num_batches_dict[task_name]
        task_choice_list = np.array(task_choice_list)
        np.random.shuffle(task_choice_list)
        dataloader_iter_dict = {
            task_name: iter(dataloader)
            for task_name, dataloader in self.dataloader_dict.items()
        }
        for task_choice in task_choice_list:
            task_name = self.task_name_list[task_choice]
            yield next(dataloader_iter_dict[task_name])


class MultitaskTrainer(transformers.Trainer):

    def get_single_train_dataloader(self, task_name, train_dataset):
        """
        Create a single-task data loader that also yields task names
        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
        if False and is_torch_tpu_available():
            train_sampler = get_tpu_sampler(train_dataset)
        else:
            train_sampler = (
                RandomSampler(train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(train_dataset)
            )

        data_loader = DataLoaderWithTaskname(
            task_name=task_name,
            data_loader=DataLoader(
                train_dataset,
                batch_size=self.args.train_batch_size,
                sampler=train_sampler,
                collate_fn=self.data_collator.collate_batch,
            ),
        )
        return data_loader

    def get_train_dataloader(self):
        """
        Returns a MultitaskDataloader, which is not actually a Dataloader
        but an iterable that returns a generator that samples from each 
        task Dataloader
        """
        return MultitaskDataloader({
            task_name: self.get_single_train_dataloader(
                task_name, task_dataset)
            for task_name, task_dataset in self.train_dataset.items()
        })