File size: 11,225 Bytes
c47ce48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import datetime
import os
import re
import gc
import json
import time
import base64
import io
import tempfile
import zipfile
import PIL
from dataclasses import dataclass
from io import BytesIO
def sanitize_filename(filename):
    """Sanitizes a filename by replacing special characters with underscores"""
    return re.sub(r'[\\/*?:"<>|]', "_", filename)

from typing import Optional, Literal, Union
from diffusers import DiffusionPipeline, DDIMScheduler
HF_TOKEN = os.environ.get("HF_TOKEN")
import streamlit as st
st.set_page_config(layout="wide")
import torch
from diffusers import (
    StableDiffusionPipeline,
    EulerDiscreteScheduler,
    StableDiffusionInpaintPipeline,
    StableDiffusionImg2ImgPipeline,
)
from PIL import Image
from PIL.PngImagePlugin import PngInfo

from datetime import datetime
from threading import Thread

import requests

from huggingface_hub import HfApi
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
from loguru import logger
from PIL.PngImagePlugin import PngInfo
from st_clickable_images import clickable_images

import streamlit.components.v1 as components

prefix = 'image_generation'

def dict_to_style(d):
    return ';'.join(f'{k}:{v}' for k, v in d.items())

def clickable_images(images, titles, div_style={}, img_style={}):
    """Generates a component with clickable images"""
    img_tag = "".join(
        f'<a href="{img}" target="_blank"><img src="{img}" title="{title}" style="{dict_to_style(img_style)}"></a>'
        for img, title in zip(images, titles)
    )
    return components.html(f'<div style="{dict_to_style(div_style)}">{img_tag}</div>', scrolling=True)

def display_and_download_images(output_images, metadata):
    with st.spinner("Preparing images..."):
        # save images to a temporary directory
        with tempfile.TemporaryDirectory() as tmpdir:
            gallery_images = []
            for i, image in enumerate(output_images):
                image.save(os.path.join(tmpdir, f"{i + 1}.png"), pnginfo=metadata)
                with open(os.path.join(tmpdir, f"{i + 1}.png"), "rb") as img:
                    encoded = base64.b64encode(img.read()).decode()
                    gallery_images.append(f"data:image/png;base64,{encoded}")

            _ = clickable_images(
                gallery_images,
                titles=[f"Image #{str(i + 1)}" for i in range(len(gallery_images))],
                div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
                img_style={"margin": "5px", "height": "200px"},
            )

            
PIPELINE_NAMES = Literal["txt2img", "inpaint", "img2img"]

DEFAULT_PROMPT = "a sprinkled donut sitting on top of a purple cherry apple with ice cubes, colorful hyperrealism, digital explosion of vibrant colors and abstract digital elements"
DEFAULT_WIDTH, DEFAULT_HEIGHT = 512, 512
OUTPUT_IMAGE_KEY = "output_img"
LOADED_IMAGE_KEY = "loaded_image"



def get_image(key: str) -> Optional[Image.Image]:
    if key in st.session_state:
        return st.session_state[key]
    return None


def set_image(key: str, img: Image.Image):
    st.session_state[key] = img


@st.cache_resource(max_entries=1)
def get_pipeline(
    name: PIPELINE_NAMES,
) -> Union[
    StableDiffusionPipeline,
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
]:
    if name in ["txt2img", "img2img"]:
        model_id = "FFusion/FFusion-BaSE"
        
        pipeline = DiffusionPipeline.from_pretrained(model_id)
        # switch the scheduler in the pipeline to use the DDIMScheduler
        pipeline.scheduler = DDIMScheduler.from_config(
            pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
        )
        pipeline = pipeline.to("cuda")
        return pipeline


def generate(
    prompt,
    pipeline_name: PIPELINE_NAMES,
    num_images=1,
    negative_prompt=None,
    steps=22,
    width=896,
    height=1024,
    guidance_scale=6,
    enable_attention_slicing=True,
    enable_xformers=True
):
    """Generates an image based on the given prompt and pipeline name"""
    negative_prompt = negative_prompt if negative_prompt else None
    p = st.progress(0)
    callback = lambda step, *_: p.progress(step / steps)

    pipe = get_pipeline(pipeline_name)
    torch.cuda.empty_cache()

    if enable_attention_slicing:
        pipe.enable_attention_slicing()
    else:
        pipe.disable_attention_slicing()

    if enable_xformers:
        pipe.enable_xformers_memory_efficient_attention()
        
    kwargs = dict(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=steps,
        callback=callback,
        guidance_scale=guidance_scale,
        guidance_rescale=0.7
    )
    print("kwargs", kwargs)

    if pipeline_name == "txt2img":
        kwargs.update(width=width, height=height)

    elif pipeline_name in ["inpaint", "img2img"]:
        kwargs.update(image_input=image_input)

    else:
        raise Exception(
            f"Cannot generate image for pipeline {pipeline_name} and {prompt}"
        )

    output_images = []  # list to hold output image objects
    for _ in range(num_images):  # loop over number of images
        result = pipe(**kwargs)  # generate one image at a time
        images = result.images
        for i, image in enumerate(images):  # loop over each image
            filename = (
                "data/"
                + sanitize_filename(re.sub(r"\s+", "_", prompt)[:50])
                + f"_{i}_{datetime.now().timestamp()}"
            )
            image.save(f"{filename}.png")
            output_images.append(image)  # add the image object to the list

    for image in output_images:
        with open(f"{filename}.txt", "w") as f:
            f.write(prompt)

    return output_images  # return the list of image objects



def prompt_and_generate_button(prefix, pipeline_name: PIPELINE_NAMES, **kwargs):
    prompt = st.text_area(
        "Prompt",
        value=DEFAULT_PROMPT,
        key=f"{prefix}-prompt",
    )
    negative_prompt = st.text_area(
        "Negative prompt",
        value="(disfigured), bad quality, ((bad art)), ((deformed)), ((extra limbs)), (((duplicate))), ((morbid)), (((ugly)), blurry, ((bad anatomy)), (((bad proportions))), cloned face, body out of frame, out of frame, bad anatomy, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), (fused fingers), (too many fingers), (((long neck))), Deformed, blurry",
        key=f"{prefix}-negative-prompt",
    )
    col1, col2 = st.columns(2)
    with col1:
        steps = st.slider("Number of inference steps", min_value=11, max_value=69, value=14, key=f"{prefix}-inference-steps")
    with col2:
        guidance_scale = st.slider(
            "Guidance scale", min_value=0.0, max_value=20.0, value=7.5, step=0.5, key=f"{prefix}-guidance-scale"
        )
   # enable_attention_slicing = st.checkbox('Enable attention slicing (enables higher resolutions but is slower)', key=f"{prefix}-attention-slicing", value=True)
   # enable_xformers = st.checkbox('Enable xformers library (better memory usage)', key=f"{prefix}-xformers", value=True)
        num_images = st.slider("Number of images to generate", min_value=1, max_value=4, value=1, key=f"{prefix}-num-images")

    images = []

    
    if st.button("Generate images", key=f"{prefix}-btn"):
        with st.spinner("Generating image..."):
            images = generate(
                prompt,
                pipeline_name,
                num_images=num_images,  # add this
                negative_prompt=negative_prompt,
                steps=steps,
                guidance_scale=guidance_scale,
                enable_attention_slicing=True,  # value always set to True
                enable_xformers=True,  # value always set to True
                **kwargs,
            )

    for i, image in enumerate(images):  # loop over each image
        set_image(f"{OUTPUT_IMAGE_KEY}_{i}", image.copy())  # save each image with a unique key


    image_indices = [int(key.split('_')[-1]) for key in st.session_state.keys() if OUTPUT_IMAGE_KEY in key]
    cols = st.columns(len(image_indices) if image_indices else 1)  # create a column for each image or a single one if no images
    for i in range(max(image_indices) + 1 if image_indices else 1):  # loop over each image index
        output_image_key = f"{OUTPUT_IMAGE_KEY}_{i}"
        output_image = get_image(output_image_key)
        if output_image:
            cols[i].image(output_image)



def width_and_height_sliders(prefix):
    col1, col2 = st.columns(2)
    with col1:
        width = st.slider(
            "Width",
            min_value=768,
            max_value=1024,
            step=128,
            value=768,
            key=f"{prefix}-width",
        )
    with col2:
        height = st.slider(
            "Height",
            min_value=768,
            max_value=1024,
            step=128,
            value=768,
            key=f"{prefix}-height",
        )
    return width, height
    
data_dir = "./data"  # Update with the correct path

# Get all file names in the data directory
file_names = os.listdir(data_dir)


def txt2img_tab():
    prefix = "txt2img"
    width, height = width_and_height_sliders(prefix)
    prompt_and_generate_button(prefix, "txt2img", width=width, height=height)


def inpainting_tab():
    col1, col2 = st.columns(2)

    with col1:
        image_input, mask_input = inpainting()

    with col2:
        if image_input and mask_input:
            prompt_and_generate_button(
                "inpaint", "inpaint", image_input=image_input, mask_input=mask_input
            )


def img2img_tab():
    col1, col2 = st.columns(2)

    with col1:
        image = image_uploader("img2img")
        if image:
            st.image(image)

    with col2:
        if image:
            prompt_and_generate_button("img2img", "img2img", image_input=image)

def main():
    st.title("FFusion AI -beta- Playground")

    tabs = ["FFusion BaSE 768+ (txt2img)"]
    selected_tab = st.selectbox("Choose a di.FFusion.ai model", tabs)

    if selected_tab == "FFusion BaSE 768+ (txt2img)":
        txt2img_tab()

    st.header("Citation")

    """
    ```
        @misc {ffusion_ai_2023,
    	author       = { {FFusion AI} },
    	title        = { FFusion-BaSE (Revision ba72848) },
    	year         = 2023,
    	url          = { https://huggingface.co/FFusion/FFusion-BaSE },
    	doi          = { 10.57967/hf/0851 },
    	publisher    = { Hugging Face }
        } http://doi.org/10.57967/hf/0851
    ```
    """

    """
        Please note that the demo is intended for academic and research purposes ONLY. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use. By interacting within this environment, you hereby acknowledge and agree to the terms of the CreativeML Open RAIL-M License.
    """
         
if __name__ == "__main__":
    main()