File size: 12,734 Bytes
4f5118b
 
 
03d6362
4f5118b
 
 
 
 
 
 
 
 
 
 
7a3f32b
4f5118b
 
 
2516d07
4f5118b
2516d07
03d6362
4f5118b
 
 
 
 
 
 
 
 
 
 
d68eb2f
 
 
 
 
 
 
 
 
 
 
 
4f5118b
 
 
 
 
 
 
 
 
 
 
 
bd39fc7
 
 
 
4f5118b
 
bd39fc7
 
 
 
 
4f5118b
 
 
 
 
 
 
 
d68eb2f
4f5118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d68eb2f
4f5118b
 
 
 
 
 
 
 
d68eb2f
4f5118b
 
 
 
 
 
 
bd39fc7
4f5118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d28740
 
 
 
 
 
03d6362
2516d07
 
03d6362
2516d07
 
 
 
4f5118b
1d54d76
 
 
 
 
 
56112c7
 
 
9b938b8
56112c7
 
 
 
 
 
 
 
 
 
 
 
316c2e2
 
56112c7
 
 
 
 
 
 
845cc97
56112c7
316c2e2
56112c7
845cc97
56112c7
 
316c2e2
56112c7
316c2e2
56112c7
316c2e2
56112c7
 
845cc97
56112c7
316c2e2
56112c7
845cc97
56112c7
845cc97
b218c32
845cc97
56112c7
 
bd39fc7
56112c7
 
 
bd39fc7
845cc97
 
56112c7
 
845cc97
56112c7
845cc97
1d54d76
845cc97
1d54d76
845cc97
1d54d76
845cc97
1d54d76
 
56112c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from diffusers import StableDiffusionXLInpaintPipeline
import gradio as gr
import numpy as np
import time
import math
import random
import imageio
from PIL import Image
from PIL import ImageFilter
import torch
import modin.pandas as pd

max_64_bit_int = 2**63 - 1

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe = pipe.to(device)

def noise_color(color, noise):
    return color + random.randint(- noise, noise)

def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, debug_mode, progress=gr.Progress()):
    start = time.time()
    progress(0, desc = "Preparing data...")

    if source_img is None:
        raise gr.Error("Please provide an image.")

    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")

    if negative_prompt is None or negative_prompt == "":
        raise gr.Error("Please provide a negative prompt input.")

    if enlarge_top is None or enlarge_top == "":
        raise gr.Error("Please provide a top input.")

    if enlarge_right is None or enlarge_right == "":
        raise gr.Error("Please provide a right input.")

    if enlarge_bottom is None or enlarge_bottom == "":
        raise gr.Error("Please provide a bottom input.")

    if enlarge_left is None or enlarge_left == "":
        raise gr.Error("Please provide a left input.")

    if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
        raise gr.Error("Please only provide positive margins.")

    if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
        raise gr.Error("At least one border must be enlarged.")

    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    #pipe = pipe.manual_seed(seed)

    try:
        imageio.imwrite("data.png", source_img)
    except:
        raise gr.Error("Can't read input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")

    # Input image
    try:
        input_image = Image.open("data.png").convert("RGB")
    except:
        raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")

    original_height, original_width, original_channel = np.array(input_image).shape
    output_width = enlarge_left + original_width + enlarge_right
    output_height = enlarge_top + original_height + enlarge_bottom

    # Enlarged image
    enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black")
    enlarged_image.paste(input_image, (0, 0))
    enlarged_image = enlarged_image.resize((output_width, output_height))
    enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))

    enlarged_image.paste(input_image, (enlarge_left, enlarge_top))

    horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
    enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
    enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))

    vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
    enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
    enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))

    returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
    enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
    enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
    enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
    enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))

    enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))

    # Noise image
    noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
    enlarged_pixels = enlarged_image.load()

    for i in range(output_width):
        for j in range(output_height):
            enlarged_pixel = enlarged_pixels[i, j]
            noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255)
            noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))

    enlarged_image.paste(noise_image, (0, 0))
    enlarged_image.paste(input_image, (enlarge_left, enlarge_top))

    # Mask
    mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
    black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (127, 127, 127, 0))
    mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
    mask_image = mask_image.filter(ImageFilter.BoxBlur(10))

    limitation = "";

    # Limited to 1 million pixels
    if 1024 * 1024 < output_width * output_height:
        factor = ((1024 * 1024) / (output_width * output_height))**0.5
        output_width = math.floor(output_width * factor)
        output_height = math.floor(output_height * factor)

        limitation = " Due to technical limitation, the image have been downscaled.";

    # Width and height must be multiple of 8
    output_width = output_width - (output_width % 8)
    output_height = output_height - (output_height % 8)
    progress(None, desc = "Processing...")

    output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]

    if debug_mode == False:
        input_image = None
        enlarged_image = None
        mask_image = None

    end = time.time()
    return [
        output_image,
        "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels. The image have been generated in " + str(end - start) + " seconds." + limitation,
        input_image,
        enlarged_image,
        mask_image
    ]

def toggle_debug(is_debug_mode):
    if is_debug_mode:
        return [gr.update(visible = True)] * 3
    else:
        return [gr.update(visible = False)] * 3

with gr.Blocks() as interface:
    gr.Markdown(
        """
        <p style="text-align: center;"><b><big><big><big>Uncrop</big></big></big></b></p>
        <p style="text-align: center;">Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p>
        <br/>
        <br/>
        🚀 Powered by <i>SDXL 1.0</i> artificial intellingence
        <br/>
        <ul>
        <li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li>
        <li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li>
        <li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li>
        <li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li>
        </ul>
        <br/>
        🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/>
        <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
        <br/>
        ⚖️ You can use, modify and share the generated images but not for commercial uses.

        """
    )
    with gr.Row():
        with gr.Column():
            dummy_1 = gr.Label(visible = False)
        with gr.Column():
            enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top ⬆️", info = "in pixels")
        with gr.Column():
            dummy_2 = gr.Label(visible = False)
    with gr.Row():
        with gr.Column():
            enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left ⬅️", info = "in pixels")
        with gr.Column():
            source_img = gr.Image(label = "Your image", sources = ["upload"], type = "numpy")
        with gr.Column():
            enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right ➡️", info = "in pixels")
    with gr.Row():
        with gr.Column():
            dummy_3 = gr.Label(visible = False)
        with gr.Column():
            enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom ⬇️", info = "in pixels")
        with gr.Column():
            dummy_4 = gr.Label(visible = False)
    with gr.Row():
        prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image')
    with gr.Row():
         with gr.Accordion("Advanced options", open = False):
            negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
            denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
            num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
            guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
            randomize_seed = gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
            seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
            debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
    with gr.Row():
        submit = gr.Button("Uncrop", variant = "primary")
    with gr.Row():
        uncropped_image = gr.Image(label = "Uncropped image")
    with gr.Row():
        information = gr.Label(label = "Information")
    with gr.Row():
        original_image = gr.Image(label = "Original image", visible = False)
    with gr.Row():
        enlarged_image = gr.Image(label = "Enlarged image", visible = False)
    with gr.Row():
        mask_image = gr.Image(label = "Mask image", visible = False)

    submit.click(toggle_debug, debug_mode, [original_image, enlarged_image, mask_image], queue = False,
                     show_progress = False).then(predict, inputs = [
        source_img,
        enlarge_top,
        enlarge_right,
        enlarge_bottom,
        enlarge_left,
        prompt,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        randomize_seed,
        seed,
        debug_mode
    ], outputs = [
        uncropped_image,
        information,
        original_image,
        enlarged_image,
        mask_image
    ], scroll_to_output = True)

    interface.queue().launch()