Spaces:
Runtime error
Runtime error
File size: 12,734 Bytes
4f5118b 03d6362 4f5118b 7a3f32b 4f5118b 2516d07 4f5118b 2516d07 03d6362 4f5118b d68eb2f 4f5118b bd39fc7 4f5118b bd39fc7 4f5118b d68eb2f 4f5118b d68eb2f 4f5118b d68eb2f 4f5118b bd39fc7 4f5118b 4d28740 03d6362 2516d07 03d6362 2516d07 4f5118b 1d54d76 56112c7 9b938b8 56112c7 316c2e2 56112c7 845cc97 56112c7 316c2e2 56112c7 845cc97 56112c7 316c2e2 56112c7 316c2e2 56112c7 316c2e2 56112c7 845cc97 56112c7 316c2e2 56112c7 845cc97 56112c7 845cc97 b218c32 845cc97 56112c7 bd39fc7 56112c7 bd39fc7 845cc97 56112c7 845cc97 56112c7 845cc97 1d54d76 845cc97 1d54d76 845cc97 1d54d76 845cc97 1d54d76 56112c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from diffusers import StableDiffusionXLInpaintPipeline
import gradio as gr
import numpy as np
import time
import math
import random
import imageio
from PIL import Image
from PIL import ImageFilter
import torch
import modin.pandas as pd
max_64_bit_int = 2**63 - 1
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe = pipe.to(device)
def noise_color(color, noise):
return color + random.randint(- noise, noise)
def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, debug_mode, progress=gr.Progress()):
start = time.time()
progress(0, desc = "Preparing data...")
if source_img is None:
raise gr.Error("Please provide an image.")
if prompt is None or prompt == "":
raise gr.Error("Please provide a prompt input.")
if negative_prompt is None or negative_prompt == "":
raise gr.Error("Please provide a negative prompt input.")
if enlarge_top is None or enlarge_top == "":
raise gr.Error("Please provide a top input.")
if enlarge_right is None or enlarge_right == "":
raise gr.Error("Please provide a right input.")
if enlarge_bottom is None or enlarge_bottom == "":
raise gr.Error("Please provide a bottom input.")
if enlarge_left is None or enlarge_left == "":
raise gr.Error("Please provide a left input.")
if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
raise gr.Error("Please only provide positive margins.")
if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
raise gr.Error("At least one border must be enlarged.")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
#pipe = pipe.manual_seed(seed)
try:
imageio.imwrite("data.png", source_img)
except:
raise gr.Error("Can't read input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
# Input image
try:
input_image = Image.open("data.png").convert("RGB")
except:
raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
original_height, original_width, original_channel = np.array(input_image).shape
output_width = enlarge_left + original_width + enlarge_right
output_height = enlarge_top + original_height + enlarge_bottom
# Enlarged image
enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black")
enlarged_image.paste(input_image, (0, 0))
enlarged_image = enlarged_image.resize((output_width, output_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20))
# Noise image
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
enlarged_pixels = enlarged_image.load()
for i in range(output_width):
for j in range(output_height):
enlarged_pixel = enlarged_pixels[i, j]
noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255)
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))
enlarged_image.paste(noise_image, (0, 0))
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
# Mask
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (127, 127, 127, 0))
mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
mask_image = mask_image.filter(ImageFilter.BoxBlur(10))
limitation = "";
# Limited to 1 million pixels
if 1024 * 1024 < output_width * output_height:
factor = ((1024 * 1024) / (output_width * output_height))**0.5
output_width = math.floor(output_width * factor)
output_height = math.floor(output_height * factor)
limitation = " Due to technical limitation, the image have been downscaled.";
# Width and height must be multiple of 8
output_width = output_width - (output_width % 8)
output_height = output_height - (output_height % 8)
progress(None, desc = "Processing...")
output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]
if debug_mode == False:
input_image = None
enlarged_image = None
mask_image = None
end = time.time()
return [
output_image,
"Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels. The image have been generated in " + str(end - start) + " seconds." + limitation,
input_image,
enlarged_image,
mask_image
]
def toggle_debug(is_debug_mode):
if is_debug_mode:
return [gr.update(visible = True)] * 3
else:
return [gr.update(visible = False)] * 3
with gr.Blocks() as interface:
gr.Markdown(
"""
<p style="text-align: center;"><b><big><big><big>Uncrop</big></big></big></b></p>
<p style="text-align: center;">Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p>
<br/>
<br/>
🚀 Powered by <i>SDXL 1.0</i> artificial intellingence
<br/>
<ul>
<li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li>
<li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li>
<li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li>
<li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li>
</ul>
<br/>
🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/>
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
<br/>
⚖️ You can use, modify and share the generated images but not for commercial uses.
"""
)
with gr.Row():
with gr.Column():
dummy_1 = gr.Label(visible = False)
with gr.Column():
enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top ⬆️", info = "in pixels")
with gr.Column():
dummy_2 = gr.Label(visible = False)
with gr.Row():
with gr.Column():
enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left ⬅️", info = "in pixels")
with gr.Column():
source_img = gr.Image(label = "Your image", sources = ["upload"], type = "numpy")
with gr.Column():
enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right ➡️", info = "in pixels")
with gr.Row():
with gr.Column():
dummy_3 = gr.Label(visible = False)
with gr.Column():
enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom ⬇️", info = "in pixels")
with gr.Column():
dummy_4 = gr.Label(visible = False)
with gr.Row():
prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image')
with gr.Row():
with gr.Accordion("Advanced options", open = False):
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark')
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
randomize_seed = gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
with gr.Row():
submit = gr.Button("Uncrop", variant = "primary")
with gr.Row():
uncropped_image = gr.Image(label = "Uncropped image")
with gr.Row():
information = gr.Label(label = "Information")
with gr.Row():
original_image = gr.Image(label = "Original image", visible = False)
with gr.Row():
enlarged_image = gr.Image(label = "Enlarged image", visible = False)
with gr.Row():
mask_image = gr.Image(label = "Mask image", visible = False)
submit.click(toggle_debug, debug_mode, [original_image, enlarged_image, mask_image], queue = False,
show_progress = False).then(predict, inputs = [
source_img,
enlarge_top,
enlarge_right,
enlarge_bottom,
enlarge_left,
prompt,
negative_prompt,
denoising_steps,
num_inference_steps,
guidance_scale,
randomize_seed,
seed,
debug_mode
], outputs = [
uncropped_image,
information,
original_image,
enlarged_image,
mask_image
], scroll_to_output = True)
interface.queue().launch() |