Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionXLInpaintPipeline | |
import gradio as gr | |
import numpy as np | |
import time | |
import math | |
import random | |
import imageio | |
from PIL import Image | |
from PIL import ImageFilter | |
import torch | |
import modin.pandas as pd | |
max_64_bit_int = 2**63 - 1 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0") | |
pipe = pipe.to(device) | |
def noise_color(color, noise): | |
return color + random.randint(- noise, noise) | |
def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, debug_mode, progress=gr.Progress()): | |
start = time.time() | |
progress(0, desc = "Preparing data...") | |
if source_img is None: | |
raise gr.Error("Please provide an image.") | |
if prompt is None or prompt == "": | |
raise gr.Error("Please provide a prompt input.") | |
if negative_prompt is None or negative_prompt == "": | |
raise gr.Error("Please provide a negative prompt input.") | |
if enlarge_top is None or enlarge_top == "": | |
raise gr.Error("Please provide a top input.") | |
if enlarge_right is None or enlarge_right == "": | |
raise gr.Error("Please provide a right input.") | |
if enlarge_bottom is None or enlarge_bottom == "": | |
raise gr.Error("Please provide a bottom input.") | |
if enlarge_left is None or enlarge_left == "": | |
raise gr.Error("Please provide a left input.") | |
if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0: | |
raise gr.Error("Please only provide positive margins.") | |
if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0: | |
raise gr.Error("At least one border must be enlarged.") | |
if randomize_seed: | |
seed = random.randint(0, max_64_bit_int) | |
random.seed(seed) | |
#pipe = pipe.manual_seed(seed) | |
try: | |
imageio.imwrite("data.png", source_img) | |
except: | |
raise gr.Error("Can't read input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).") | |
# Input image | |
try: | |
input_image = Image.open("data.png").convert("RGB") | |
except: | |
raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).") | |
original_height, original_width, original_channel = np.array(input_image).shape | |
output_width = enlarge_left + original_width + enlarge_right | |
output_height = enlarge_top + original_height + enlarge_bottom | |
# Enlarged image | |
enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black") | |
enlarged_image.paste(input_image, (0, 0)) | |
enlarged_image = enlarged_image.resize((output_width, output_height)) | |
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20)) | |
enlarged_image.paste(input_image, (enlarge_left, enlarge_top)) | |
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height)) | |
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top)) | |
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top)) | |
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2)) | |
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2))) | |
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height)) | |
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2)) | |
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2))) | |
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height)) | |
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2))) | |
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height)) | |
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(20)) | |
# Noise image | |
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black") | |
enlarged_pixels = enlarged_image.load() | |
for i in range(output_width): | |
for j in range(output_height): | |
enlarged_pixel = enlarged_pixels[i, j] | |
noise = min(max(enlarge_left - i, i - (enlarge_left + original_width), enlarge_top - j, j - (enlarge_top + original_height), 0), 255) | |
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255)) | |
enlarged_image.paste(noise_image, (0, 0)) | |
enlarged_image.paste(input_image, (enlarge_left, enlarge_top)) | |
# Mask | |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0)) | |
black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (127, 127, 127, 0)) | |
mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10)) | |
mask_image = mask_image.filter(ImageFilter.BoxBlur(10)) | |
limitation = ""; | |
# Limited to 1 million pixels | |
if 1024 * 1024 < output_width * output_height: | |
factor = ((1024 * 1024) / (output_width * output_height))**0.5 | |
output_width = math.floor(output_width * factor) | |
output_height = math.floor(output_height * factor) | |
limitation = " Due to technical limitation, the image have been downscaled."; | |
# Width and height must be multiple of 8 | |
output_width = output_width - (output_width % 8) | |
output_height = output_height - (output_height % 8) | |
progress(None, desc = "Processing...") | |
output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0] | |
if debug_mode == False: | |
input_image = None | |
enlarged_image = None | |
mask_image = None | |
end = time.time() | |
return [ | |
output_image, | |
"Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels. The image have been generated in " + str(end - start) + " seconds." + limitation, | |
input_image, | |
enlarged_image, | |
mask_image | |
] | |
def toggle_debug(is_debug_mode): | |
if is_debug_mode: | |
return [gr.update(visible = True)] * 3 | |
else: | |
return [gr.update(visible = False)] * 3 | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
<p style="text-align: center;"><b><big><big><big>Uncrop</big></big></big></b></p> | |
<p style="text-align: center;">Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p> | |
<br/> | |
<br/> | |
🚀 Powered by <i>SDXL 1.0</i> artificial intellingence | |
<br/> | |
<ul> | |
<li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li> | |
<li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li> | |
<li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li> | |
<li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li> | |
</ul> | |
<br/> | |
🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/> | |
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a> | |
<br/> | |
⚖️ You can use, modify and share the generated images but not for commercial uses. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
dummy_1 = gr.Label(visible = False) | |
with gr.Column(): | |
enlarge_top = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top ⬆️", info = "in pixels") | |
with gr.Column(): | |
dummy_2 = gr.Label(visible = False) | |
with gr.Row(): | |
with gr.Column(): | |
enlarge_left = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left ⬅️", info = "in pixels") | |
with gr.Column(): | |
source_img = gr.Image(label = "Your image", sources = ["upload"], type = "numpy") | |
with gr.Column(): | |
enlarge_right = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right ➡️", info = "in pixels") | |
with gr.Row(): | |
with gr.Column(): | |
dummy_3 = gr.Label(visible = False) | |
with gr.Column(): | |
enlarge_bottom = gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom ⬇️", info = "in pixels") | |
with gr.Column(): | |
dummy_4 = gr.Label(visible = False) | |
with gr.Row(): | |
prompt = gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image') | |
with gr.Row(): | |
with gr.Accordion("Advanced options", open = False): | |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark') | |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result") | |
num_inference_steps = gr.Slider(minimum = 10, maximum = 25, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality") | |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt") | |
randomize_seed = gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different") | |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)") | |
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") | |
with gr.Row(): | |
submit = gr.Button("Uncrop", variant = "primary") | |
with gr.Row(): | |
uncropped_image = gr.Image(label = "Uncropped image") | |
with gr.Row(): | |
information = gr.Label(label = "Information") | |
with gr.Row(): | |
original_image = gr.Image(label = "Original image", visible = False) | |
with gr.Row(): | |
enlarged_image = gr.Image(label = "Enlarged image", visible = False) | |
with gr.Row(): | |
mask_image = gr.Image(label = "Mask image", visible = False) | |
submit.click(toggle_debug, debug_mode, [original_image, enlarged_image, mask_image], queue = False, | |
show_progress = False).then(predict, inputs = [ | |
source_img, | |
enlarge_top, | |
enlarge_right, | |
enlarge_bottom, | |
enlarge_left, | |
prompt, | |
negative_prompt, | |
denoising_steps, | |
num_inference_steps, | |
guidance_scale, | |
randomize_seed, | |
seed, | |
debug_mode | |
], outputs = [ | |
uncropped_image, | |
information, | |
original_image, | |
enlarged_image, | |
mask_image | |
], scroll_to_output = True) | |
interface.queue().launch() |