Spaces:
Configuration error
Configuration error
Dataset stats: \ | |
lat_mean = 39.951564548022596 \ | |
lat_std = 0.0006361722351128644 \ | |
lon_mean = -75.19150880602636 \ | |
lon_std = 0.000611411894337979 | |
The model can be loaded using: | |
``` | |
from huggingface_hub import hf_hub_download | |
import torch | |
# Specify the repository and the filename of the model you want to load | |
repo_id = "FinalProj5190/ImageToGPSproject_new_vit" # Replace with your repo name | |
filename = "resnet_gps_regressor_complete.pth" | |
model_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
# Load the model using torch | |
model_test = torch.load(model_path) | |
model_test.eval() # Set the model to evaluation mode | |
``` | |
The model implementation is here: | |
``` | |
from transformers import ViTModel | |
class MultiModalModel(nn.Module): | |
def __init__(self, num_classes=2): | |
super(MultiModalModel, self).__init__() | |
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') | |
# Replace for regression instead of classification | |
self.regression_head = nn.Sequential( | |
nn.Linear(self.vit.config.hidden_size, 512), | |
nn.ReLU(), | |
nn.Linear(512, num_classes) | |
) | |
def forward(self, x): | |
outputs = self.vit(pixel_values=x) | |
# Take the last hidden state (CLS token embedding) | |
cls_output = outputs.last_hidden_state[:, 0, :] | |
# Pass through the regression head | |
gps_coordinates = self.regression_head(cls_output) | |
return gps_coordinates | |
``` |