CL-KWS_202408_v1 / dataset /dataloader_demo.py
Francis0917's picture
Upload folder using huggingface_hub
2045faa verified
raw
history blame
8.89 kB
import math, os, re, sys
from pathlib import Path
import numpy as np
import pandas as pd
from multiprocessing import Pool
from scipy.io import wavfile
import tensorflow as tf
from pydub import AudioSegment
from tensorflow.keras.utils import Sequence, OrderedEnqueuer
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.sequence import pad_sequences
sys.path.append(os.path.dirname(__file__))
from g2p.g2p_en.g2p import G2p
import warnings
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
class GoogleCommandsDataloader(Sequence):
def __init__(self,
batch_size,
fs = 16000,
keyword=['realtek go','ok google','vintage','hackney','crocodile','surroundings','oversaw','northwestern'],
wav_path_or_object='/share/nas165/yiting/recording/ok_google/Default_20240725-183008.wav',
features='g2p_embed', # phoneme, g2p_embed, both ...
):
phonemes = ["<pad>", ] + ['AA0', 'AA1', 'AA2', 'AE0', 'AE1', 'AE2', 'AH0', 'AH1', 'AH2', 'AO0',
'AO1', 'AO2', 'AW0', 'AW1', 'AW2', 'AY0', 'AY1', 'AY2', 'B', 'CH',
'D', 'DH', 'EH0', 'EH1', 'EH2', 'ER0', 'ER1', 'ER2', 'EY0', 'EY1',
'EY2', 'F', 'G', 'HH', 'IH0', 'IH1', 'IH2', 'IY0', 'IY1', 'IY2',
'JH', 'K', 'L', 'M', 'N', 'NG', 'OW0', 'OW1', 'OW2', 'OY0',
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH0', 'UH1',
'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH',
' ']
self.p2idx = {p: idx for idx, p in enumerate(phonemes)}
self.idx2p = {idx: p for idx, p in enumerate(phonemes)}
self.batch_size = batch_size
self.fs = fs
self.features = features
self.nPhoneme = len(phonemes)
self.g2p = G2p()
self.keyword = keyword
self.wav = wav_path_or_object
self.__prep__()
self.on_epoch_end()
def __prep__(self):
self.data = pd.DataFrame(columns=['wav', 'text', 'duration', 'label'])
anchor = ' '
target_dict = {}
if isinstance(self.wav, str):
anchor = self.wav.split('/')[-2].lower().replace('_', ' ')
duration = float(wavfile.read(self.wav)[1].shape[-1])/self.fs
else:
duration = float(self.wav[1].shape[-1])/self.fs
# duration = float(wavfile.read(self.wav)[1].shape[-1])/self.fs
# duration = float(self.wav_path_or_object.shape[-1])/self.fs
for i, comparison_text in enumerate(self.keyword):
label = 1 if comparison_text == anchor else 0
target_dict[i] = {
'wav': self.wav,
'text': comparison_text,
'duration': duration,
'label': label
}
print(target_dict)
self.data = self.data.append(pd.DataFrame.from_dict(target_dict, 'index'), ignore_index=True)
print(self.data)
# g2p & p2idx by g2p_en package
print(">> Convert word to phoneme")
self.data['phoneme'] = self.data['text'].apply(lambda x: self.g2p(re.sub(r"[^a-zA-Z0-9]+", ' ', x)))
print(">> Convert phoneme to index")
self.data['pIndex'] = self.data['phoneme'].apply(lambda x: [self.p2idx[t] for t in x])
print(">> Compute phoneme embedding")
self.data['g2p_embed'] = self.data['text'].apply(lambda x: self.g2p.embedding(x))
# if (self.pkl is not None) and (not os.path.isfile(self.pkl)):
# self.data.to_pickle(self.pkl)
# Get longest data
self.wav_list = self.data['wav'].values
self.idx_list = self.data['pIndex'].values
# self.idx_list = [np.insert(lst, 0, 0) for lst in self.idx_list]
# self.sIdx_list = [np.insert(lst, 0, 0) for lst in self.sIdx_list]
self.emb_list = self.data['g2p_embed'].values
self.lab_list = self.data['label'].values
self.data = self.data.sort_values(by='duration').reset_index(drop=True)
# Set dataloader params.
self.len = len(self.data)
self.maxlen_t = int((int(self.data['text'].apply(lambda x: len(x)).max() / 10) + 1) * 10)
# self.maxlen_a = int(((int(self.data['duration'].values[-1] / 0.5) + 1 ) * self.fs / 2)*1.2)
# print(self.maxlen_a)
self.maxlen_a = 56000
def __len__(self):
# return total batch-wise length
return math.ceil(self.len / self.batch_size)
def _load_wav(self, wav):
return np.array(wavfile.read(wav)[1]).astype(np.float32) / 32768.0
def __getitem__(self, idx):
# chunking
indices = self.indices[idx * self.batch_size : (idx + 1) * self.batch_size]
# load inputs
if isinstance(self.wav, str):
batch_x = [np.array(wavfile.read(self.wav_list[i])[1]).astype(np.float32) / 32768.0 for i in indices]
else:
batch_x = [np.array((self.wav_list[i])[1]).astype(np.float32)/ 32768.0 for i in indices]
# batch_x = [np.array(wavfile.read(self.wav_list[i])[1]).astype(np.float32) / 32768.0 for i in indices]
if self.features == 'both':
batch_p = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
batch_e = [np.array(self.emb_list[i]).astype(np.float32) for i in indices]
else:
if self.features == 'phoneme':
batch_y = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
elif self.features == 'g2p_embed':
batch_y = [np.array(self.emb_list[i]).astype(np.float32) for i in indices]
# load outputs
batch_z = [np.array([self.lab_list[i]]).astype(np.float32) for i in indices]
# padding and masking
pad_batch_x = pad_sequences(np.array(batch_x), maxlen=self.maxlen_a, value=0.0, padding='post', dtype=batch_x[0].dtype)
if self.features == 'both':
pad_batch_p = pad_sequences(np.array(batch_p), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_p[0].dtype)
pad_batch_e = pad_sequences(np.array(batch_e), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_e[0].dtype)
else:
pad_batch_y = pad_sequences(np.array(batch_y), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_y[0].dtype)
pad_batch_z = pad_sequences(np.array(batch_z), value=0.0, padding='post', dtype=batch_z[0].dtype)
if self.features == 'both':
return pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z
else:
return pad_batch_x, pad_batch_y, pad_batch_z
def on_epoch_end(self):
self.indices = np.arange(self.len)
# if self.shuffle == True:
# np.random.shuffle(self.indices)
def convert_sequence_to_dataset(dataloader):
def data_generator():
for i in range(dataloader.__len__()):
if dataloader.features == 'both':
pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z = dataloader[i]
yield pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z
else:
pad_batch_x, pad_batch_y, pad_batch_z = dataloader[i]
yield pad_batch_x, pad_batch_y, pad_batch_z
if dataloader.features == 'both':
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t, 256), dtype=tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
)
else:
data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=(
tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
tf.TensorSpec(shape=(None, dataloader.maxlen_t) if dataloader.features == 'phoneme' else (None, dataloader.maxlen_t, 256),
dtype=tf.int32 if dataloader.features == 'phoneme' else tf.float32),
tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
)
# data_dataset = data_dataset.cache()
# data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=output_signature)
data_dataset = data_dataset.prefetch(1)
return data_dataset
if __name__ == '__main__':
dataloader = GoogleCommandsDataloader(2048, testset_only=True, pkl='/home/DB/google_speech_commands/google_testset.pkl', features='g2p_embed')