LatentSync / eval /eval_syncnet_acc.py
Francke's picture
3
aad5337
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from tqdm.auto import tqdm
import torch
import torch.nn as nn
from einops import rearrange
from latentsync.models.syncnet import SyncNet
from latentsync.data.syncnet_dataset import SyncNetDataset
from diffusers import AutoencoderKL
from omegaconf import OmegaConf
from accelerate.utils import set_seed
def main(config):
set_seed(config.run.seed)
device = "cuda" if torch.cuda.is_available() else "cpu"
if config.data.latent_space:
vae = AutoencoderKL.from_pretrained(
"runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16
)
vae.requires_grad_(False)
vae.to(device)
# Dataset and Dataloader setup
dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
test_dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=config.data.batch_size,
shuffle=False,
num_workers=config.data.num_workers,
drop_last=False,
worker_init_fn=dataset.worker_init_fn,
)
# Model
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}")
checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device)
syncnet.load_state_dict(checkpoint["state_dict"])
syncnet.to(dtype=torch.float16)
syncnet.requires_grad_(False)
syncnet.eval()
global_step = 0
num_val_batches = config.data.num_val_samples // config.data.batch_size
progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy")
num_correct_preds = 0
num_total_preds = 0
while True:
for step, batch in enumerate(test_dataloader):
### >>>> Test >>>> ###
frames = batch["frames"].to(device, dtype=torch.float16)
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
y = batch["y"].to(device, dtype=torch.float16).squeeze(1)
if config.data.latent_space:
frames = rearrange(frames, "b f c h w -> (b f) c h w")
with torch.no_grad():
frames = vae.encode(frames).latent_dist.sample() * 0.18215
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
else:
frames = rearrange(frames, "b f c h w -> b (f c) h w")
if config.data.lower_half:
height = frames.shape[2]
frames = frames[:, :, height // 2 :, :]
with torch.no_grad():
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
preds = (sims > 0.5).to(dtype=torch.float16)
num_correct_preds += (preds == y).sum().item()
num_total_preds += len(sims)
progress_bar.update(1)
global_step += 1
if global_step >= num_val_batches:
progress_bar.close()
print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator")
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml")
args = parser.parse_args()
# Load a configuration file
config = OmegaConf.load(args.config_path)
main(config)