Spaces:
Running
Running
# Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py | |
import os, pdb, subprocess, glob, cv2 | |
import numpy as np | |
from shutil import rmtree | |
import torch | |
from scenedetect.video_manager import VideoManager | |
from scenedetect.scene_manager import SceneManager | |
from scenedetect.stats_manager import StatsManager | |
from scenedetect.detectors import ContentDetector | |
from scipy.interpolate import interp1d | |
from scipy.io import wavfile | |
from scipy import signal | |
from eval.detectors import S3FD | |
class SyncNetDetector: | |
def __init__(self, device, detect_results_dir="detect_results"): | |
self.s3f_detector = S3FD(device=device) | |
self.detect_results_dir = detect_results_dir | |
def __call__(self, video_path: str, min_track=50, scale=False): | |
crop_dir = os.path.join(self.detect_results_dir, "crop") | |
video_dir = os.path.join(self.detect_results_dir, "video") | |
frames_dir = os.path.join(self.detect_results_dir, "frames") | |
temp_dir = os.path.join(self.detect_results_dir, "temp") | |
# ========== DELETE EXISTING DIRECTORIES ========== | |
if os.path.exists(crop_dir): | |
rmtree(crop_dir) | |
if os.path.exists(video_dir): | |
rmtree(video_dir) | |
if os.path.exists(frames_dir): | |
rmtree(frames_dir) | |
if os.path.exists(temp_dir): | |
rmtree(temp_dir) | |
# ========== MAKE NEW DIRECTORIES ========== | |
os.makedirs(crop_dir) | |
os.makedirs(video_dir) | |
os.makedirs(frames_dir) | |
os.makedirs(temp_dir) | |
# ========== CONVERT VIDEO AND EXTRACT FRAMES ========== | |
if scale: | |
scaled_video_path = os.path.join(video_dir, "scaled.mp4") | |
command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}" | |
subprocess.run(command, shell=True) | |
video_path = scaled_video_path | |
command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}" | |
subprocess.run(command, shell=True, stdout=None) | |
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}" | |
subprocess.run(command, shell=True, stdout=None) | |
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}" | |
subprocess.run(command, shell=True, stdout=None) | |
faces = self.detect_face(frames_dir) | |
scene = self.scene_detect(video_dir) | |
# Face tracking | |
alltracks = [] | |
for shot in scene: | |
if shot[1].frame_num - shot[0].frame_num >= min_track: | |
alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track)) | |
# Face crop | |
for ii, track in enumerate(alltracks): | |
self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir) | |
rmtree(temp_dir) | |
def scene_detect(self, video_dir): | |
video_manager = VideoManager([os.path.join(video_dir, "video.mp4")]) | |
stats_manager = StatsManager() | |
scene_manager = SceneManager(stats_manager) | |
# Add ContentDetector algorithm (constructor takes detector options like threshold). | |
scene_manager.add_detector(ContentDetector()) | |
base_timecode = video_manager.get_base_timecode() | |
video_manager.set_downscale_factor() | |
video_manager.start() | |
scene_manager.detect_scenes(frame_source=video_manager) | |
scene_list = scene_manager.get_scene_list(base_timecode) | |
if scene_list == []: | |
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())] | |
return scene_list | |
def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100): | |
iouThres = 0.5 # Minimum IOU between consecutive face detections | |
tracks = [] | |
while True: | |
track = [] | |
for framefaces in scenefaces: | |
for face in framefaces: | |
if track == []: | |
track.append(face) | |
framefaces.remove(face) | |
elif face["frame"] - track[-1]["frame"] <= num_failed_det: | |
iou = bounding_box_iou(face["bbox"], track[-1]["bbox"]) | |
if iou > iouThres: | |
track.append(face) | |
framefaces.remove(face) | |
continue | |
else: | |
break | |
if track == []: | |
break | |
elif len(track) > min_track: | |
framenum = np.array([f["frame"] for f in track]) | |
bboxes = np.array([np.array(f["bbox"]) for f in track]) | |
frame_i = np.arange(framenum[0], framenum[-1] + 1) | |
bboxes_i = [] | |
for ij in range(0, 4): | |
interpfn = interp1d(framenum, bboxes[:, ij]) | |
bboxes_i.append(interpfn(frame_i)) | |
bboxes_i = np.stack(bboxes_i, axis=1) | |
if ( | |
max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1])) | |
> min_face_size | |
): | |
tracks.append({"frame": frame_i, "bbox": bboxes_i}) | |
return tracks | |
def detect_face(self, frames_dir, facedet_scale=0.25): | |
flist = glob.glob(os.path.join(frames_dir, "*.jpg")) | |
flist.sort() | |
dets = [] | |
for fidx, fname in enumerate(flist): | |
image = cv2.imread(fname) | |
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale]) | |
dets.append([]) | |
for bbox in bboxes: | |
dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]}) | |
return dets | |
def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4): | |
flist = glob.glob(os.path.join(frames_dir, "*.jpg")) | |
flist.sort() | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224)) | |
dets = {"x": [], "y": [], "s": []} | |
for det in track["bbox"]: | |
dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2) | |
dets["y"].append((det[1] + det[3]) / 2) # crop center x | |
dets["x"].append((det[0] + det[2]) / 2) # crop center y | |
# Smooth detections | |
dets["s"] = signal.medfilt(dets["s"], kernel_size=13) | |
dets["x"] = signal.medfilt(dets["x"], kernel_size=13) | |
dets["y"] = signal.medfilt(dets["y"], kernel_size=13) | |
for fidx, frame in enumerate(track["frame"]): | |
cs = crop_scale | |
bs = dets["s"][fidx] # Detection box size | |
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount | |
image = cv2.imread(flist[frame]) | |
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110)) | |
my = dets["y"][fidx] + bsi # BBox center Y | |
mx = dets["x"][fidx] + bsi # BBox center X | |
face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))] | |
vOut.write(cv2.resize(face, (224, 224))) | |
audiotmp = os.path.join(temp_dir, "audio.wav") | |
audiostart = (track["frame"][0]) / frame_rate | |
audioend = (track["frame"][-1] + 1) / frame_rate | |
vOut.release() | |
# ========== CROP AUDIO FILE ========== | |
command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % ( | |
os.path.join(video_dir, "audio.wav"), | |
audiostart, | |
audioend, | |
audiotmp, | |
) | |
output = subprocess.run(command, shell=True, stdout=None) | |
sample_rate, audio = wavfile.read(audiotmp) | |
# ========== COMBINE AUDIO AND VIDEO FILES ========== | |
command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % ( | |
cropfile, | |
audiotmp, | |
cropfile, | |
) | |
output = subprocess.run(command, shell=True, stdout=None) | |
os.remove(cropfile + "t.mp4") | |
return {"track": track, "proc_track": dets} | |
def bounding_box_iou(boxA, boxB): | |
xA = max(boxA[0], boxB[0]) | |
yA = max(boxA[1], boxB[1]) | |
xB = min(boxA[2], boxB[2]) | |
yB = min(boxA[3], boxB[3]) | |
interArea = max(0, xB - xA) * max(0, yB - yA) | |
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1]) | |
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1]) | |
iou = interArea / float(boxAArea + boxBArea - interArea) | |
return iou | |