LatentSync / eval /syncnet_detect.py
Francke's picture
3
aad5337
# Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py
import os, pdb, subprocess, glob, cv2
import numpy as np
from shutil import rmtree
import torch
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
from scipy.interpolate import interp1d
from scipy.io import wavfile
from scipy import signal
from eval.detectors import S3FD
class SyncNetDetector:
def __init__(self, device, detect_results_dir="detect_results"):
self.s3f_detector = S3FD(device=device)
self.detect_results_dir = detect_results_dir
def __call__(self, video_path: str, min_track=50, scale=False):
crop_dir = os.path.join(self.detect_results_dir, "crop")
video_dir = os.path.join(self.detect_results_dir, "video")
frames_dir = os.path.join(self.detect_results_dir, "frames")
temp_dir = os.path.join(self.detect_results_dir, "temp")
# ========== DELETE EXISTING DIRECTORIES ==========
if os.path.exists(crop_dir):
rmtree(crop_dir)
if os.path.exists(video_dir):
rmtree(video_dir)
if os.path.exists(frames_dir):
rmtree(frames_dir)
if os.path.exists(temp_dir):
rmtree(temp_dir)
# ========== MAKE NEW DIRECTORIES ==========
os.makedirs(crop_dir)
os.makedirs(video_dir)
os.makedirs(frames_dir)
os.makedirs(temp_dir)
# ========== CONVERT VIDEO AND EXTRACT FRAMES ==========
if scale:
scaled_video_path = os.path.join(video_dir, "scaled.mp4")
command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
subprocess.run(command, shell=True)
video_path = scaled_video_path
command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
subprocess.run(command, shell=True, stdout=None)
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
subprocess.run(command, shell=True, stdout=None)
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
subprocess.run(command, shell=True, stdout=None)
faces = self.detect_face(frames_dir)
scene = self.scene_detect(video_dir)
# Face tracking
alltracks = []
for shot in scene:
if shot[1].frame_num - shot[0].frame_num >= min_track:
alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))
# Face crop
for ii, track in enumerate(alltracks):
self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)
rmtree(temp_dir)
def scene_detect(self, video_dir):
video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
# Add ContentDetector algorithm (constructor takes detector options like threshold).
scene_manager.add_detector(ContentDetector())
base_timecode = video_manager.get_base_timecode()
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list(base_timecode)
if scene_list == []:
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
return scene_list
def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):
iouThres = 0.5 # Minimum IOU between consecutive face detections
tracks = []
while True:
track = []
for framefaces in scenefaces:
for face in framefaces:
if track == []:
track.append(face)
framefaces.remove(face)
elif face["frame"] - track[-1]["frame"] <= num_failed_det:
iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
if iou > iouThres:
track.append(face)
framefaces.remove(face)
continue
else:
break
if track == []:
break
elif len(track) > min_track:
framenum = np.array([f["frame"] for f in track])
bboxes = np.array([np.array(f["bbox"]) for f in track])
frame_i = np.arange(framenum[0], framenum[-1] + 1)
bboxes_i = []
for ij in range(0, 4):
interpfn = interp1d(framenum, bboxes[:, ij])
bboxes_i.append(interpfn(frame_i))
bboxes_i = np.stack(bboxes_i, axis=1)
if (
max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
> min_face_size
):
tracks.append({"frame": frame_i, "bbox": bboxes_i})
return tracks
def detect_face(self, frames_dir, facedet_scale=0.25):
flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
flist.sort()
dets = []
for fidx, fname in enumerate(flist):
image = cv2.imread(fname)
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])
dets.append([])
for bbox in bboxes:
dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})
return dets
def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):
flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
flist.sort()
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))
dets = {"x": [], "y": [], "s": []}
for det in track["bbox"]:
dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
dets["y"].append((det[1] + det[3]) / 2) # crop center x
dets["x"].append((det[0] + det[2]) / 2) # crop center y
# Smooth detections
dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
dets["y"] = signal.medfilt(dets["y"], kernel_size=13)
for fidx, frame in enumerate(track["frame"]):
cs = crop_scale
bs = dets["s"][fidx] # Detection box size
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
image = cv2.imread(flist[frame])
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
my = dets["y"][fidx] + bsi # BBox center Y
mx = dets["x"][fidx] + bsi # BBox center X
face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]
vOut.write(cv2.resize(face, (224, 224)))
audiotmp = os.path.join(temp_dir, "audio.wav")
audiostart = (track["frame"][0]) / frame_rate
audioend = (track["frame"][-1] + 1) / frame_rate
vOut.release()
# ========== CROP AUDIO FILE ==========
command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
os.path.join(video_dir, "audio.wav"),
audiostart,
audioend,
audiotmp,
)
output = subprocess.run(command, shell=True, stdout=None)
sample_rate, audio = wavfile.read(audiotmp)
# ========== COMBINE AUDIO AND VIDEO FILES ==========
command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
cropfile,
audiotmp,
cropfile,
)
output = subprocess.run(command, shell=True, stdout=None)
os.remove(cropfile + "t.mp4")
return {"track": track, "proc_track": dets}
def bounding_box_iou(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou