Francke's picture
t
24c345c
# Adapted from https://github.com/Rudrabha/Wav2Lip/blob/master/audio.py
import librosa
import librosa.filters
import numpy as np
from scipy import signal
from scipy.io import wavfile
from omegaconf import OmegaConf
import torch
audio_config_path = "configs/audio.yaml"
config = OmegaConf.load(audio_config_path)
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
# proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr):
librosa.output.write_wav(path, wav, sr=sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
def get_hop_size():
hop_size = config.audio.hop_size
if hop_size is None:
assert config.audio.frame_shift_ms is not None
hop_size = int(config.audio.frame_shift_ms / 1000 * config.audio.sample_rate)
return hop_size
def linearspectrogram(wav):
D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize))
S = _amp_to_db(np.abs(D)) - config.audio.ref_level_db
if config.audio.signal_normalization:
return _normalize(S)
return S
def melspectrogram(wav):
D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - config.audio.ref_level_db
if config.audio.signal_normalization:
return _normalize(S)
return S
def _lws_processor():
import lws
return lws.lws(config.audio.n_fft, get_hop_size(), fftsize=config.audio.win_size, mode="speech")
def _stft(y):
if config.audio.use_lws:
return _lws_processor(config.audio).stft(y).T
else:
return librosa.stft(y=y, n_fft=config.audio.n_fft, hop_length=get_hop_size(), win_length=config.audio.win_size)
##########################################################
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram"""
pad = fsize - fshift
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding"""
M = num_frames(len(x), fsize, fshift)
pad = fsize - fshift
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)
def _build_mel_basis():
assert config.audio.fmax <= config.audio.sample_rate // 2
return librosa.filters.mel(
sr=config.audio.sample_rate,
n_fft=config.audio.n_fft,
n_mels=config.audio.num_mels,
fmin=config.audio.fmin,
fmax=config.audio.fmax,
)
def _amp_to_db(x):
min_level = np.exp(config.audio.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)
def _normalize(S):
if config.audio.allow_clipping_in_normalization:
if config.audio.symmetric_mels:
return np.clip(
(2 * config.audio.max_abs_value) * ((S - config.audio.min_level_db) / (-config.audio.min_level_db))
- config.audio.max_abs_value,
-config.audio.max_abs_value,
config.audio.max_abs_value,
)
else:
return np.clip(
config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)),
0,
config.audio.max_abs_value,
)
assert S.max() <= 0 and S.min() - config.audio.min_level_db >= 0
if config.audio.symmetric_mels:
return (2 * config.audio.max_abs_value) * (
(S - config.audio.min_level_db) / (-config.audio.min_level_db)
) - config.audio.max_abs_value
else:
return config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db))
def _denormalize(D):
if config.audio.allow_clipping_in_normalization:
if config.audio.symmetric_mels:
return (
(np.clip(D, -config.audio.max_abs_value, config.audio.max_abs_value) + config.audio.max_abs_value)
* -config.audio.min_level_db
/ (2 * config.audio.max_abs_value)
) + config.audio.min_level_db
else:
return (
np.clip(D, 0, config.audio.max_abs_value) * -config.audio.min_level_db / config.audio.max_abs_value
) + config.audio.min_level_db
if config.audio.symmetric_mels:
return (
(D + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value)
) + config.audio.min_level_db
else:
return (D * -config.audio.min_level_db / config.audio.max_abs_value) + config.audio.min_level_db
def get_melspec_overlap(audio_samples, melspec_length=52):
mel_spec_overlap = melspectrogram(audio_samples.numpy())
mel_spec_overlap = torch.from_numpy(mel_spec_overlap)
i = 0
mel_spec_overlap_list = []
while i + melspec_length < mel_spec_overlap.shape[1] - 3:
mel_spec_overlap_list.append(mel_spec_overlap[:, i : i + melspec_length].unsqueeze(0))
i += 3
mel_spec_overlap = torch.stack(mel_spec_overlap_list)
return mel_spec_overlap