mdztxi2 / app.py
Geek7's picture
Update app.py
c3fe2d2 verified
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
import os
import subprocess
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
# Initialize the Flask app
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Initialize the InferenceClient with your Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment
client = InferenceClient(token=HF_TOKEN)
# Hardcoded negative prompt
NEGATIVE_PROMPT_FINGERS = """2D,missing fingers, extra fingers, elongated fingers, fused fingers,
mutated fingers, poorly drawn fingers, disfigured fingers,
too many fingers, deformed hands, extra hands, malformed hands,
blurry hands, disproportionate fingers"""
@app.route('/')
def home():
return "Welcome to the Image Background Remover!"
# Simple content moderation function
def is_prompt_explicit(prompt):
# Streamlined keyword list to avoid unnecessary restrictions
explicit_keywords = [
"sexual", "porn", "hentai", "fetish", "nude", "provocative", "obscene", "vulgar", "intimate", "kinky", "hardcore",
"threesome", "orgy", "masturbation", "genital", "suicide",
"self-harm", "depression", "kill myself", "worthless"
]
for keyword in explicit_keywords:
if keyword.lower() in prompt.lower():
return True
return False
# Function to generate an image from a text prompt
def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None):
try:
# Generate the image using Hugging Face's inference API with additional parameters
image = client.text_to_image(
prompt=prompt,
negative_prompt=NEGATIVE_PROMPT_FINGERS,
height=height,
width=width,
model=model,
num_inference_steps=num_inference_steps, # Control the number of inference steps
guidance_scale=guidance_scale, # Control the guidance scale
seed=seed # Control the seed for reproducibility
)
return image # Return the generated image
except Exception as e:
print(f"Error generating image: {str(e)}")
return None
# Flask route for the API endpoint to generate an image
@app.route('/generate_image', methods=['POST'])
def generate_api():
data = request.get_json()
# Extract required fields from the request
prompt = data.get('prompt', '')
negative_prompt = data.get('negative_prompt', None)
height = data.get('height', 1024) # Default height
width = data.get('width', 720) # Default width
num_inference_steps = data.get('num_inference_steps', 50) # Default number of inference steps
guidance_scale = data.get('guidance_scale', 7.5) # Default guidance scale
model_name = data.get('model', 'stabilityai/stable-diffusion-2-1') # Default model
seed = data.get('seed', None) # Seed for reproducibility, default is None
if not prompt:
return jsonify({"error": "Prompt is required"}), 400
try:
# Check for explicit content
if is_prompt_explicit(prompt):
# Return the pre-defined "thinkgood.png" image
return send_file(
"nsfw.jpg",
mimetype='image/png',
as_attachment=False,
download_name='thinkgood.png'
)
# Call the generate_image function with the provided parameters
image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed)
if image:
# Save the image to a BytesIO object
img_byte_arr = BytesIO()
image.save(img_byte_arr, format='PNG') # Convert the image to PNG
img_byte_arr.seek(0) # Move to the start of the byte stream
# Send the generated image as a response
return send_file(
img_byte_arr,
mimetype='image/png',
as_attachment=False, # Send the file as an attachment
download_name='generated_image.png' # The file name for download
)
else:
return jsonify({"error": "Failed to generate image"}), 500
except Exception as e:
print(f"Error in generate_api: {str(e)}") # Log the error
return jsonify({"error": str(e)}), 500
# Add this block to make sure your app runs when called
if __name__ == "__main__":
subprocess.Popen(["python", "wk.py"]) # Start awake.py
app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing