Spaces:
Running
Running
File size: 4,698 Bytes
cfcca1d 3d8ce2d 834ae1c b9e3f13 3d8ce2d cfcca1d 798ece9 cfcca1d 798ece9 cfcca1d 798ece9 cfcca1d 67fdf41 7a9dcc4 785158e 7a9dcc4 352a5fd 06aea67 cfcca1d f942880 cfcca1d 0878545 f3203dc cfcca1d 3096731 f942880 cfcca1d 0ee6b9d ba528d5 cfcca1d 050845c cfcca1d 261e2dd 050845c df9ddf2 cfcca1d ef57dfe cfcca1d 364b225 b9e3f13 352a5fd 0315eec 6dd4f19 f942880 0315eec 1e6b6ed cfcca1d 364b225 cfcca1d 364b225 528fe2d 798ece9 364b225 8abd5b9 7c5b0a3 1e6b6ed 782c184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain_text_splitters import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import PyPDFLoader
from langchain_chroma import Chroma
import tempfile
from langchain_cohere import CohereEmbeddings
st.set_page_config(page_title="Document Genie", layout="wide")
st.markdown("""
## PDFChat: Get instant insights from your PDF
This chatbot is built using the Retrieval-Augmented Generation (RAG) framework, leveraging Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by breaking them down into manageable chunks, creates a searchable vector store, and generates accurate answers to user queries. This advanced approach ensures high-quality, contextually relevant responses for an efficient and effective user experience.
### How It Works
Follow these simple steps to interact with the chatbot:
1. **Upload Your Document**: The system accepts a PDF file at one time, analyzing the content to provide comprehensive insights.
2. **Ask a Question**: After processing the document, ask any question related to the content of your uploaded document for a precise answer.
""")
#def get_pdf(pdf_docs):
# loader = PyPDFLoader(pdf_docs)
# docs = loader.load()
# return docs
def get_pdf(uploaded_file):
if uploaded_file :
temp_file = "./temp.pdf"
# Delete the existing temp.pdf file if it exists
if os.path.exists(temp_file):
os.remove(temp_file)
with open(temp_file, "wb") as file:
file.write(uploaded_file.getvalue())
file_name = uploaded_file.name
loader = PyPDFLoader(temp_file)
docs = loader.load()
return docs
def text_splitter(text):
text_splitter = RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size=100000,
chunk_overlap=50000,
separators=["\n\n","\n"," ",".",","])
chunks=text_splitter.split_documents(text)
return chunks
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
def get_conversational_chain():
prompt_template = """
Given the following extracted parts of a long document and a question, create a final answer.
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", and then ignore the context and add the answer from your knowledge like a simple llm prompt.
Try to give atleast the basic information.Donot return blank answer.\n\n
Make sure to understand the question and answer as per the question.
If the question involves terms like detailed or explained , give answer which involves complete detail about the question.\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
#model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=GOOGLE_API_KEY)
model = ChatGoogleGenerativeAI(model="gemini-1.0-pro-latest", temperature=0.3, google_api_key=GOOGLE_API_KEY)
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def embedding(chunk,query):
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings = CohereEmbeddings(model="embed-english-v3.0")
db = Chroma.from_documents(chunk,embeddings)
doc = db.similarity_search(query)
print(doc)
chain = get_conversational_chain()
response = chain({"input_documents": doc, "question": query}, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
def main():
st.header("Chat with your pdf💁")
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader")
query = st.text_input("Ask a Question from the PDF File", key="query")
if st.button("Submit & Process", key="process_button"):
with st.spinner("Processing..."):
raw_text = get_pdf(pdf_docs)
text_chunks = text_splitter(raw_text)
if query:
embedding(text_chunks,query)
st.success("Done")
if __name__ == "__main__":
main() |