Spaces:
Running
Running
File size: 7,615 Bytes
37c98fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from __future__ import annotations
import os
import subprocess
import sys
if os.getenv('SYSTEM') == 'spaces':
import mim
mim.uninstall('mmcv-full', confirm_yes=True)
mim.install('mmcv-full==1.5.0', is_yes=True)
subprocess.call('pip uninstall -y opencv-python'.split())
subprocess.call('pip uninstall -y opencv-python-headless'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
import huggingface_hub
import numpy as np
import torch
import torch.nn as nn
sys.path.insert(0, 'ViTPose/')
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
process_mmdet_results, vis_pose_result)
HF_TOKEN = os.environ['HF_TOKEN']
class DetModel:
def __init__(self, device: str | torch.device):
self.device = torch.device(device)
self.models = self._load_models()
self.model_name = 'YOLOX-l'
def _load_models(self) -> dict[str, nn.Module]:
model_dict = {
'YOLOX-tiny': {
'config':
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
'model':
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
},
'YOLOX-s': {
'config':
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
'model':
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
},
'YOLOX-l': {
'config':
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
'model':
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
},
'YOLOX-x': {
'config':
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
'model':
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
},
}
models = {
key: init_detector(dic['config'], dic['model'], device=self.device)
for key, dic in model_dict.items()
}
return models
def set_model_name(self, name: str) -> None:
self.model_name = name
def detect_and_visualize(
self, image: np.ndarray,
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
out = self.detect(image)
vis = self.visualize_detection_results(image, out, score_threshold)
return out, vis
def detect(self, image: np.ndarray) -> list[np.ndarray]:
image = image[:, :, ::-1] # RGB -> BGR
model = self.models[self.model_name]
out = inference_detector(model, image)
return out
def visualize_detection_results(
self,
image: np.ndarray,
detection_results: list[np.ndarray],
score_threshold: float = 0.3) -> np.ndarray:
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)]
image = image[:, :, ::-1] # RGB -> BGR
model = self.models[self.model_name]
vis = model.show_result(image,
person_det,
score_thr=score_threshold,
bbox_color=None,
text_color=(200, 200, 200),
mask_color=None)
return vis[:, :, ::-1] # BGR -> RGB
class PoseModel:
def __init__(self, device: str | torch.device):
self.device = torch.device(device)
self.models = self._load_models()
self.model_name = 'ViTPose-B (multi-task train, COCO)'
def _load_models(self) -> dict[str, nn.Module]:
model_dict = {
'ViTPose-B (single-task train)': {
'config':
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
'model': 'models/vitpose-b.pth',
},
'ViTPose-L (single-task train)': {
'config':
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
'model': 'models/vitpose-l.pth',
},
'ViTPose-B (multi-task train, COCO)': {
'config':
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
'model': 'models/vitpose-b-multi-coco.pth',
},
'ViTPose-L (multi-task train, COCO)': {
'config':
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
'model': 'models/vitpose-l-multi-coco.pth',
},
}
models = dict()
for key, dic in model_dict.items():
ckpt_path = huggingface_hub.hf_hub_download(
'hysts/ViTPose', dic['model'], use_auth_token=HF_TOKEN)
model = init_pose_model(dic['config'],
ckpt_path,
device=self.device)
models[key] = model
return models
def set_model_name(self, name: str) -> None:
self.model_name = name
def predict_pose_and_visualize(
self,
image: np.ndarray,
det_results: list[np.ndarray],
box_score_threshold: float,
kpt_score_threshold: float,
vis_dot_radius: int,
vis_line_thickness: int,
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
out = self.predict_pose(image, det_results, box_score_threshold)
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
vis_dot_radius, vis_line_thickness)
return out, vis
def predict_pose(
self,
image: np.ndarray,
det_results: list[np.ndarray],
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
image = image[:, :, ::-1] # RGB -> BGR
model = self.models[self.model_name]
person_results = process_mmdet_results(det_results, 1)
out, _ = inference_top_down_pose_model(model,
image,
person_results=person_results,
bbox_thr=box_score_threshold,
format='xyxy')
return out
def visualize_pose_results(self,
image: np.ndarray,
pose_results: list[np.ndarray],
kpt_score_threshold: float = 0.3,
vis_dot_radius: int = 4,
vis_line_thickness: int = 1) -> np.ndarray:
image = image[:, :, ::-1] # RGB -> BGR
model = self.models[self.model_name]
vis = vis_pose_result(model,
image,
pose_results,
kpt_score_thr=kpt_score_threshold,
radius=vis_dot_radius,
thickness=vis_line_thickness)
return vis[:, :, ::-1] # BGR -> RGB
|