ViTPose / app.py
hysts
Refactor
37c98fe
raw
history blame
7.67 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import pathlib
import tarfile
import gradio as gr
from model import DetModel, PoseModel
DESCRIPTION = '''# ViTPose
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def extract_tar() -> None:
if pathlib.Path('mmdet_configs/configs').exists():
return
with tarfile.open('mmdet_configs/configs.tar') as f:
f.extractall('mmdet_configs')
def main():
args = parse_args()
extract_tar()
det_model = DetModel(device=args.device)
pose_model = PoseModel(device=args.device)
with gr.Blocks(theme=args.theme, css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Box():
gr.Markdown('## Step 1')
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image',
type='numpy')
with gr.Row():
detector_name = gr.Dropdown(list(
det_model.models.keys()),
value=det_model.model_name,
label='Detector')
with gr.Row():
detect_button = gr.Button(value='Detect')
det_preds = gr.Variable()
with gr.Column():
with gr.Row():
detection_visualization = gr.Image(
label='Detection Result', type='numpy')
with gr.Row():
vis_det_score_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.5,
label='Visualization Score Threshold')
with gr.Row():
redraw_det_button = gr.Button(value='Redraw')
with gr.Row():
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
example_images = gr.Dataset(components=[input_image],
samples=[[path.as_posix()]
for path in paths])
with gr.Box():
gr.Markdown('## Step 2')
with gr.Row():
with gr.Column():
with gr.Row():
pose_model_name = gr.Dropdown(
list(pose_model.models.keys()),
value=pose_model.model_name,
label='Pose Model')
det_score_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.5,
label='Box Score Threshold')
with gr.Row():
predict_button = gr.Button(value='Predict')
pose_preds = gr.Variable()
with gr.Column():
with gr.Row():
pose_visualization = gr.Image(label='Result',
type='numpy')
with gr.Row():
vis_kpt_score_threshold = gr.Slider(
0,
1,
step=0.05,
value=0.3,
label='Visualization Score Threshold')
with gr.Row():
vis_dot_radius = gr.Slider(1,
10,
step=1,
value=4,
label='Dot Radius')
with gr.Row():
vis_line_thickness = gr.Slider(1,
10,
step=1,
value=2,
label='Line Thickness')
with gr.Row():
redraw_pose_button = gr.Button(value='Redraw')
gr.Markdown(FOOTER)
detector_name.change(fn=det_model.set_model_name,
inputs=detector_name,
outputs=None)
detect_button.click(fn=det_model.detect_and_visualize,
inputs=[
input_image,
vis_det_score_threshold,
],
outputs=[
det_preds,
detection_visualization,
])
redraw_det_button.click(fn=det_model.visualize_detection_results,
inputs=[
input_image,
det_preds,
vis_det_score_threshold,
],
outputs=detection_visualization)
pose_model_name.change(fn=pose_model.set_model_name,
inputs=pose_model_name,
outputs=None)
predict_button.click(fn=pose_model.predict_pose_and_visualize,
inputs=[
input_image,
det_preds,
det_score_threshold,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=[
pose_preds,
pose_visualization,
])
redraw_pose_button.click(fn=pose_model.visualize_pose_results,
inputs=[
input_image,
pose_preds,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=pose_visualization)
example_images.click(
fn=set_example_image,
inputs=example_images,
outputs=input_image,
)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()