Spaces:
Running
Running
Update requirements.txt
#8
by
test1444
- opened
- .pre-commit-config.yaml +45 -59
- .style.yapf +5 -0
- README.md +1 -4
- app.py +179 -134
- model.py +113 -82
- requirements.txt +2 -3
- style.css +4 -1
.pre-commit-config.yaml
CHANGED
@@ -1,60 +1,46 @@
|
|
|
|
1 |
repos:
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
hooks:
|
47 |
-
- id: nbstripout
|
48 |
-
args:
|
49 |
-
[
|
50 |
-
"--extra-keys",
|
51 |
-
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
52 |
-
]
|
53 |
-
- repo: https://github.com/nbQA-dev/nbQA
|
54 |
-
rev: 1.8.5
|
55 |
-
hooks:
|
56 |
-
- id: nbqa-black
|
57 |
-
- id: nbqa-pyupgrade
|
58 |
-
args: ["--py37-plus"]
|
59 |
-
- id: nbqa-isort
|
60 |
-
args: ["--float-to-top"]
|
|
|
1 |
+
exclude: ^(ViTPose/|mmdet_configs/configs/)
|
2 |
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.10.1
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.812
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
- repo: https://github.com/google/yapf
|
33 |
+
rev: v0.32.0
|
34 |
+
hooks:
|
35 |
+
- id: yapf
|
36 |
+
args: ['--parallel', '--in-place']
|
37 |
+
- repo: https://github.com/kynan/nbstripout
|
38 |
+
rev: 0.5.0
|
39 |
+
hooks:
|
40 |
+
- id: nbstripout
|
41 |
+
args: ['--extra-keys', 'metadata.interpreter metadata.kernelspec cell.metadata.pycharm']
|
42 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
43 |
+
rev: 1.3.1
|
44 |
+
hooks:
|
45 |
+
- id: nbqa-isort
|
46 |
+
- id: nbqa-yapf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
README.md
CHANGED
@@ -4,12 +4,9 @@ emoji: 📊
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
suggested_hardware: t4-small
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
14 |
-
|
15 |
-
https://arxiv.org/abs/2204.12484
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.1.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
app.py
CHANGED
@@ -2,153 +2,198 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import
|
6 |
import pathlib
|
7 |
-
import shlex
|
8 |
-
import subprocess
|
9 |
import tarfile
|
10 |
|
11 |
-
|
12 |
-
subprocess.run(shlex.split("pip install click==7.1.2"))
|
13 |
-
subprocess.run(shlex.split("pip install typer==0.9.4"))
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
mim.install("mmcv-full==1.5.0", is_yes=True)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74"))
|
23 |
|
24 |
-
import gradio as gr
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
|
31 |
def extract_tar() -> None:
|
32 |
-
if pathlib.Path(
|
33 |
return
|
34 |
-
with tarfile.open(
|
35 |
-
f.extractall(
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
with gr.
|
47 |
-
gr.Markdown(
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
with gr.
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
|
124 |
-
pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name)
|
125 |
-
predict_button.click(
|
126 |
-
fn=pose_model.run,
|
127 |
-
inputs=[
|
128 |
-
pose_model_name,
|
129 |
-
input_image,
|
130 |
-
det_preds,
|
131 |
-
det_score_threshold,
|
132 |
-
vis_kpt_score_threshold,
|
133 |
-
vis_dot_radius,
|
134 |
-
vis_line_thickness,
|
135 |
-
],
|
136 |
-
outputs=[
|
137 |
-
pose_preds,
|
138 |
-
pose_visualization,
|
139 |
-
],
|
140 |
-
)
|
141 |
-
redraw_pose_button.click(
|
142 |
-
fn=pose_model.visualize_pose_results,
|
143 |
-
inputs=[
|
144 |
-
input_image,
|
145 |
-
pose_preds,
|
146 |
-
vis_kpt_score_threshold,
|
147 |
-
vis_dot_radius,
|
148 |
-
vis_line_thickness,
|
149 |
-
],
|
150 |
-
outputs=pose_visualization,
|
151 |
-
)
|
152 |
|
153 |
-
if __name__ ==
|
154 |
-
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
+
import argparse
|
6 |
import pathlib
|
|
|
|
|
7 |
import tarfile
|
8 |
|
9 |
+
import gradio as gr
|
|
|
|
|
10 |
|
11 |
+
from model import AppDetModel, AppPoseModel
|
12 |
|
13 |
+
DESCRIPTION = '''# ViTPose
|
|
|
14 |
|
15 |
+
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
|
16 |
+
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" />'
|
|
|
17 |
|
|
|
18 |
|
19 |
+
def parse_args() -> argparse.Namespace:
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument('--device', type=str, default='cpu')
|
22 |
+
parser.add_argument('--theme', type=str)
|
23 |
+
parser.add_argument('--share', action='store_true')
|
24 |
+
parser.add_argument('--port', type=int)
|
25 |
+
parser.add_argument('--disable-queue',
|
26 |
+
dest='enable_queue',
|
27 |
+
action='store_false')
|
28 |
+
return parser.parse_args()
|
29 |
|
30 |
+
|
31 |
+
def set_example_image(example: list) -> dict:
|
32 |
+
return gr.Image.update(value=example[0])
|
33 |
|
34 |
|
35 |
def extract_tar() -> None:
|
36 |
+
if pathlib.Path('mmdet_configs/configs').exists():
|
37 |
return
|
38 |
+
with tarfile.open('mmdet_configs/configs.tar') as f:
|
39 |
+
f.extractall('mmdet_configs')
|
40 |
+
|
41 |
+
|
42 |
+
def main():
|
43 |
+
args = parse_args()
|
44 |
+
|
45 |
+
extract_tar()
|
46 |
+
|
47 |
+
det_model = AppDetModel(device=args.device)
|
48 |
+
pose_model = AppPoseModel(device=args.device)
|
49 |
+
|
50 |
+
with gr.Blocks(theme=args.theme, css='style.css') as demo:
|
51 |
+
gr.Markdown(DESCRIPTION)
|
52 |
+
|
53 |
+
with gr.Box():
|
54 |
+
gr.Markdown('## Step 1')
|
55 |
+
with gr.Row():
|
56 |
+
with gr.Column():
|
57 |
+
with gr.Row():
|
58 |
+
input_image = gr.Image(label='Input Image',
|
59 |
+
type='numpy')
|
60 |
+
with gr.Row():
|
61 |
+
detector_name = gr.Dropdown(list(
|
62 |
+
det_model.MODEL_DICT.keys()),
|
63 |
+
value=det_model.model_name,
|
64 |
+
label='Detector')
|
65 |
+
with gr.Row():
|
66 |
+
detect_button = gr.Button(value='Detect')
|
67 |
+
det_preds = gr.Variable()
|
68 |
+
with gr.Column():
|
69 |
+
with gr.Row():
|
70 |
+
detection_visualization = gr.Image(
|
71 |
+
label='Detection Result',
|
72 |
+
type='numpy',
|
73 |
+
elem_id='det-result')
|
74 |
+
with gr.Row():
|
75 |
+
vis_det_score_threshold = gr.Slider(
|
76 |
+
0,
|
77 |
+
1,
|
78 |
+
step=0.05,
|
79 |
+
value=0.5,
|
80 |
+
label='Visualization Score Threshold')
|
81 |
+
with gr.Row():
|
82 |
+
redraw_det_button = gr.Button(value='Redraw')
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
|
86 |
+
example_images = gr.Dataset(components=[input_image],
|
87 |
+
samples=[[path.as_posix()]
|
88 |
+
for path in paths])
|
89 |
+
|
90 |
+
with gr.Box():
|
91 |
+
gr.Markdown('## Step 2')
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
with gr.Row():
|
95 |
+
pose_model_name = gr.Dropdown(
|
96 |
+
list(pose_model.MODEL_DICT.keys()),
|
97 |
+
value=pose_model.model_name,
|
98 |
+
label='Pose Model')
|
99 |
+
det_score_threshold = gr.Slider(
|
100 |
+
0,
|
101 |
+
1,
|
102 |
+
step=0.05,
|
103 |
+
value=0.5,
|
104 |
+
label='Box Score Threshold')
|
105 |
+
with gr.Row():
|
106 |
+
predict_button = gr.Button(value='Predict')
|
107 |
+
pose_preds = gr.Variable()
|
108 |
+
with gr.Column():
|
109 |
+
with gr.Row():
|
110 |
+
pose_visualization = gr.Image(label='Result',
|
111 |
+
type='numpy',
|
112 |
+
elem_id='pose-result')
|
113 |
+
with gr.Row():
|
114 |
+
vis_kpt_score_threshold = gr.Slider(
|
115 |
+
0,
|
116 |
+
1,
|
117 |
+
step=0.05,
|
118 |
+
value=0.3,
|
119 |
+
label='Visualization Score Threshold')
|
120 |
+
with gr.Row():
|
121 |
+
vis_dot_radius = gr.Slider(1,
|
122 |
+
10,
|
123 |
+
step=1,
|
124 |
+
value=4,
|
125 |
+
label='Dot Radius')
|
126 |
+
with gr.Row():
|
127 |
+
vis_line_thickness = gr.Slider(1,
|
128 |
+
10,
|
129 |
+
step=1,
|
130 |
+
value=2,
|
131 |
+
label='Line Thickness')
|
132 |
+
with gr.Row():
|
133 |
+
redraw_pose_button = gr.Button(value='Redraw')
|
134 |
+
|
135 |
+
gr.Markdown(FOOTER)
|
136 |
+
|
137 |
+
detector_name.change(fn=det_model.set_model,
|
138 |
+
inputs=detector_name,
|
139 |
+
outputs=None)
|
140 |
+
detect_button.click(fn=det_model.run,
|
141 |
+
inputs=[
|
142 |
+
detector_name,
|
143 |
+
input_image,
|
144 |
+
vis_det_score_threshold,
|
145 |
+
],
|
146 |
+
outputs=[
|
147 |
+
det_preds,
|
148 |
+
detection_visualization,
|
149 |
+
])
|
150 |
+
redraw_det_button.click(fn=det_model.visualize_detection_results,
|
151 |
+
inputs=[
|
152 |
+
input_image,
|
153 |
+
det_preds,
|
154 |
+
vis_det_score_threshold,
|
155 |
+
],
|
156 |
+
outputs=detection_visualization)
|
157 |
+
|
158 |
+
pose_model_name.change(fn=pose_model.set_model,
|
159 |
+
inputs=pose_model_name,
|
160 |
+
outputs=None)
|
161 |
+
predict_button.click(fn=pose_model.run,
|
162 |
+
inputs=[
|
163 |
+
pose_model_name,
|
164 |
+
input_image,
|
165 |
+
det_preds,
|
166 |
+
det_score_threshold,
|
167 |
+
vis_kpt_score_threshold,
|
168 |
+
vis_dot_radius,
|
169 |
+
vis_line_thickness,
|
170 |
+
],
|
171 |
+
outputs=[
|
172 |
+
pose_preds,
|
173 |
+
pose_visualization,
|
174 |
+
])
|
175 |
+
redraw_pose_button.click(fn=pose_model.visualize_pose_results,
|
176 |
+
inputs=[
|
177 |
+
input_image,
|
178 |
+
pose_preds,
|
179 |
+
vis_kpt_score_threshold,
|
180 |
+
vis_dot_radius,
|
181 |
+
vis_line_thickness,
|
182 |
+
],
|
183 |
+
outputs=pose_visualization)
|
184 |
+
|
185 |
+
example_images.click(
|
186 |
+
fn=set_example_image,
|
187 |
+
inputs=example_images,
|
188 |
+
outputs=input_image,
|
189 |
+
)
|
190 |
+
|
191 |
+
demo.launch(
|
192 |
+
enable_queue=args.enable_queue,
|
193 |
+
server_port=args.port,
|
194 |
+
share=args.share,
|
195 |
)
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
if __name__ == '__main__':
|
199 |
+
main()
|
model.py
CHANGED
@@ -1,50 +1,68 @@
|
|
1 |
from __future__ import annotations
|
2 |
|
|
|
3 |
import pathlib
|
|
|
4 |
import sys
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import huggingface_hub
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
|
11 |
app_dir = pathlib.Path(__file__).parent
|
12 |
-
submodule_dir = app_dir /
|
13 |
sys.path.insert(0, submodule_dir.as_posix())
|
14 |
|
15 |
from mmdet.apis import inference_detector, init_detector
|
16 |
-
from mmpose.apis import (
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
vis_pose_result,
|
21 |
-
)
|
22 |
|
23 |
|
24 |
class DetModel:
|
25 |
MODEL_DICT = {
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
},
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
},
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
},
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
},
|
42 |
}
|
43 |
|
44 |
-
def __init__(self):
|
45 |
-
self.device = torch.device(
|
46 |
self._load_all_models_once()
|
47 |
-
self.model_name =
|
48 |
self.model = self._load_model(self.model_name)
|
49 |
|
50 |
def _load_all_models_once(self) -> None:
|
@@ -52,8 +70,8 @@ class DetModel:
|
|
52 |
self._load_model(name)
|
53 |
|
54 |
def _load_model(self, name: str) -> nn.Module:
|
55 |
-
|
56 |
-
return init_detector(
|
57 |
|
58 |
def set_model(self, name: str) -> None:
|
59 |
if name == self.model_name:
|
@@ -61,7 +79,9 @@ class DetModel:
|
|
61 |
self.model_name = name
|
62 |
self.model = self._load_model(name)
|
63 |
|
64 |
-
def detect_and_visualize(
|
|
|
|
|
65 |
out = self.detect(image)
|
66 |
vis = self.visualize_detection_results(image, out, score_threshold)
|
67 |
return out, vis
|
@@ -72,46 +92,56 @@ class DetModel:
|
|
72 |
return out
|
73 |
|
74 |
def visualize_detection_results(
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79
|
78 |
|
79 |
image = image[:, :, ::-1] # RGB -> BGR
|
80 |
-
vis = self.model.show_result(
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
return vis[:, :, ::-1] # BGR -> RGB
|
84 |
|
85 |
|
86 |
class AppDetModel(DetModel):
|
87 |
-
def run(self, model_name: str, image: np.ndarray,
|
|
|
88 |
self.set_model(model_name)
|
89 |
return self.detect_and_visualize(image, score_threshold)
|
90 |
|
91 |
|
92 |
class PoseModel:
|
93 |
MODEL_DICT = {
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
97 |
},
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
101 |
},
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
},
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
},
|
110 |
}
|
111 |
|
112 |
-
def __init__(self):
|
113 |
-
self.device = torch.device(
|
114 |
-
self.model_name =
|
115 |
self.model = self._load_model(self.model_name)
|
116 |
|
117 |
def _load_all_models_once(self) -> None:
|
@@ -119,9 +149,11 @@ class PoseModel:
|
|
119 |
self._load_model(name)
|
120 |
|
121 |
def _load_model(self, name: str) -> nn.Module:
|
122 |
-
|
123 |
-
ckpt_path = huggingface_hub.hf_hub_download(
|
124 |
-
|
|
|
|
|
125 |
return model
|
126 |
|
127 |
def set_model(self, name: str) -> None:
|
@@ -140,51 +172,50 @@ class PoseModel:
|
|
140 |
vis_line_thickness: int,
|
141 |
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
142 |
out = self.predict_pose(image, det_results, box_score_threshold)
|
143 |
-
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
|
|
144 |
return out, vis
|
145 |
|
146 |
def predict_pose(
|
147 |
-
|
148 |
-
|
|
|
|
|
149 |
image = image[:, :, ::-1] # RGB -> BGR
|
150 |
person_results = process_mmdet_results(det_results, 1)
|
151 |
-
out, _ = inference_top_down_pose_model(
|
152 |
-
|
153 |
-
|
|
|
|
|
154 |
return out
|
155 |
|
156 |
-
def visualize_pose_results(
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
vis_line_thickness: int = 1,
|
163 |
-
) -> np.ndarray:
|
164 |
image = image[:, :, ::-1] # RGB -> BGR
|
165 |
-
vis = vis_pose_result(
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
thickness=vis_line_thickness,
|
172 |
-
)
|
173 |
return vis[:, :, ::-1] # BGR -> RGB
|
174 |
|
175 |
|
176 |
class AppPoseModel(PoseModel):
|
177 |
def run(
|
178 |
-
self,
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
box_score_threshold: float,
|
183 |
-
kpt_score_threshold: float,
|
184 |
-
vis_dot_radius: int,
|
185 |
-
vis_line_thickness: int,
|
186 |
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
187 |
self.set_model(model_name)
|
188 |
-
return self.predict_pose_and_visualize(
|
189 |
-
|
190 |
-
|
|
|
|
|
|
1 |
from __future__ import annotations
|
2 |
|
3 |
+
import os
|
4 |
import pathlib
|
5 |
+
import subprocess
|
6 |
import sys
|
7 |
|
8 |
+
if os.getenv('SYSTEM') == 'spaces':
|
9 |
+
import mim
|
10 |
+
|
11 |
+
mim.uninstall('mmcv-full', confirm_yes=True)
|
12 |
+
mim.install('mmcv-full==1.5.0', is_yes=True)
|
13 |
+
|
14 |
+
subprocess.run('pip uninstall -y opencv-python'.split())
|
15 |
+
subprocess.run('pip uninstall -y opencv-python-headless'.split())
|
16 |
+
subprocess.run('pip install opencv-python-headless==4.5.5.64'.split())
|
17 |
+
|
18 |
import huggingface_hub
|
19 |
import numpy as np
|
20 |
import torch
|
21 |
import torch.nn as nn
|
22 |
|
23 |
app_dir = pathlib.Path(__file__).parent
|
24 |
+
submodule_dir = app_dir / 'ViTPose/'
|
25 |
sys.path.insert(0, submodule_dir.as_posix())
|
26 |
|
27 |
from mmdet.apis import inference_detector, init_detector
|
28 |
+
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
29 |
+
process_mmdet_results, vis_pose_result)
|
30 |
+
|
31 |
+
HF_TOKEN = os.environ['HF_TOKEN']
|
|
|
|
|
32 |
|
33 |
|
34 |
class DetModel:
|
35 |
MODEL_DICT = {
|
36 |
+
'YOLOX-tiny': {
|
37 |
+
'config':
|
38 |
+
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
39 |
+
'model':
|
40 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
41 |
},
|
42 |
+
'YOLOX-s': {
|
43 |
+
'config':
|
44 |
+
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
45 |
+
'model':
|
46 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
47 |
},
|
48 |
+
'YOLOX-l': {
|
49 |
+
'config':
|
50 |
+
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
51 |
+
'model':
|
52 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
53 |
},
|
54 |
+
'YOLOX-x': {
|
55 |
+
'config':
|
56 |
+
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
57 |
+
'model':
|
58 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
59 |
},
|
60 |
}
|
61 |
|
62 |
+
def __init__(self, device: str | torch.device):
|
63 |
+
self.device = torch.device(device)
|
64 |
self._load_all_models_once()
|
65 |
+
self.model_name = 'YOLOX-l'
|
66 |
self.model = self._load_model(self.model_name)
|
67 |
|
68 |
def _load_all_models_once(self) -> None:
|
|
|
70 |
self._load_model(name)
|
71 |
|
72 |
def _load_model(self, name: str) -> nn.Module:
|
73 |
+
dic = self.MODEL_DICT[name]
|
74 |
+
return init_detector(dic['config'], dic['model'], device=self.device)
|
75 |
|
76 |
def set_model(self, name: str) -> None:
|
77 |
if name == self.model_name:
|
|
|
79 |
self.model_name = name
|
80 |
self.model = self._load_model(name)
|
81 |
|
82 |
+
def detect_and_visualize(
|
83 |
+
self, image: np.ndarray,
|
84 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
85 |
out = self.detect(image)
|
86 |
vis = self.visualize_detection_results(image, out, score_threshold)
|
87 |
return out, vis
|
|
|
92 |
return out
|
93 |
|
94 |
def visualize_detection_results(
|
95 |
+
self,
|
96 |
+
image: np.ndarray,
|
97 |
+
detection_results: list[np.ndarray],
|
98 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
99 |
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79
|
100 |
|
101 |
image = image[:, :, ::-1] # RGB -> BGR
|
102 |
+
vis = self.model.show_result(image,
|
103 |
+
person_det,
|
104 |
+
score_thr=score_threshold,
|
105 |
+
bbox_color=None,
|
106 |
+
text_color=(200, 200, 200),
|
107 |
+
mask_color=None)
|
108 |
return vis[:, :, ::-1] # BGR -> RGB
|
109 |
|
110 |
|
111 |
class AppDetModel(DetModel):
|
112 |
+
def run(self, model_name: str, image: np.ndarray,
|
113 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
114 |
self.set_model(model_name)
|
115 |
return self.detect_and_visualize(image, score_threshold)
|
116 |
|
117 |
|
118 |
class PoseModel:
|
119 |
MODEL_DICT = {
|
120 |
+
'ViTPose-B (single-task train)': {
|
121 |
+
'config':
|
122 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
123 |
+
'model': 'models/vitpose-b.pth',
|
124 |
},
|
125 |
+
'ViTPose-L (single-task train)': {
|
126 |
+
'config':
|
127 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
128 |
+
'model': 'models/vitpose-l.pth',
|
129 |
},
|
130 |
+
'ViTPose-B (multi-task train, COCO)': {
|
131 |
+
'config':
|
132 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
133 |
+
'model': 'models/vitpose-b-multi-coco.pth',
|
134 |
},
|
135 |
+
'ViTPose-L (multi-task train, COCO)': {
|
136 |
+
'config':
|
137 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
138 |
+
'model': 'models/vitpose-l-multi-coco.pth',
|
139 |
},
|
140 |
}
|
141 |
|
142 |
+
def __init__(self, device: str | torch.device):
|
143 |
+
self.device = torch.device(device)
|
144 |
+
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
145 |
self.model = self._load_model(self.model_name)
|
146 |
|
147 |
def _load_all_models_once(self) -> None:
|
|
|
149 |
self._load_model(name)
|
150 |
|
151 |
def _load_model(self, name: str) -> nn.Module:
|
152 |
+
dic = self.MODEL_DICT[name]
|
153 |
+
ckpt_path = huggingface_hub.hf_hub_download('hysts/ViTPose',
|
154 |
+
dic['model'],
|
155 |
+
use_auth_token=HF_TOKEN)
|
156 |
+
model = init_pose_model(dic['config'], ckpt_path, device=self.device)
|
157 |
return model
|
158 |
|
159 |
def set_model(self, name: str) -> None:
|
|
|
172 |
vis_line_thickness: int,
|
173 |
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
174 |
out = self.predict_pose(image, det_results, box_score_threshold)
|
175 |
+
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
176 |
+
vis_dot_radius, vis_line_thickness)
|
177 |
return out, vis
|
178 |
|
179 |
def predict_pose(
|
180 |
+
self,
|
181 |
+
image: np.ndarray,
|
182 |
+
det_results: list[np.ndarray],
|
183 |
+
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
184 |
image = image[:, :, ::-1] # RGB -> BGR
|
185 |
person_results = process_mmdet_results(det_results, 1)
|
186 |
+
out, _ = inference_top_down_pose_model(self.model,
|
187 |
+
image,
|
188 |
+
person_results=person_results,
|
189 |
+
bbox_thr=box_score_threshold,
|
190 |
+
format='xyxy')
|
191 |
return out
|
192 |
|
193 |
+
def visualize_pose_results(self,
|
194 |
+
image: np.ndarray,
|
195 |
+
pose_results: list[np.ndarray],
|
196 |
+
kpt_score_threshold: float = 0.3,
|
197 |
+
vis_dot_radius: int = 4,
|
198 |
+
vis_line_thickness: int = 1) -> np.ndarray:
|
|
|
|
|
199 |
image = image[:, :, ::-1] # RGB -> BGR
|
200 |
+
vis = vis_pose_result(self.model,
|
201 |
+
image,
|
202 |
+
pose_results,
|
203 |
+
kpt_score_thr=kpt_score_threshold,
|
204 |
+
radius=vis_dot_radius,
|
205 |
+
thickness=vis_line_thickness)
|
|
|
|
|
206 |
return vis[:, :, ::-1] # BGR -> RGB
|
207 |
|
208 |
|
209 |
class AppPoseModel(PoseModel):
|
210 |
def run(
|
211 |
+
self, model_name: str, image: np.ndarray,
|
212 |
+
det_results: list[np.ndarray], box_score_threshold: float,
|
213 |
+
kpt_score_threshold: float, vis_dot_radius: int,
|
214 |
+
vis_line_thickness: int
|
|
|
|
|
|
|
|
|
215 |
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
216 |
self.set_model(model_name)
|
217 |
+
return self.predict_pose_and_visualize(image, det_results,
|
218 |
+
box_score_threshold,
|
219 |
+
kpt_score_threshold,
|
220 |
+
vis_dot_radius,
|
221 |
+
vis_line_thickness)
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
mmcv-full==1.5.0
|
2 |
mmdet==2.24.1
|
3 |
mmpose==0.25.1
|
4 |
-
numpy==1.
|
5 |
-
opencv-python-headless==4.
|
6 |
openmim==0.1.5
|
7 |
timm==0.5.4
|
8 |
torch==1.11.0
|
|
|
|
|
1 |
mmdet==2.24.1
|
2 |
mmpose==0.25.1
|
3 |
+
numpy==1.22.4
|
4 |
+
opencv-python-headless==4.5.5.64
|
5 |
openmim==0.1.5
|
6 |
timm==0.5.4
|
7 |
torch==1.11.0
|
style.css
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
h1 {
|
2 |
text-align: center;
|
3 |
-
display: block;
|
4 |
}
|
5 |
div#det-result {
|
6 |
max-width: 600px;
|
@@ -10,3 +9,7 @@ div#pose-result {
|
|
10 |
max-width: 600px;
|
11 |
max-height: 600px;
|
12 |
}
|
|
|
|
|
|
|
|
|
|
1 |
h1 {
|
2 |
text-align: center;
|
|
|
3 |
}
|
4 |
div#det-result {
|
5 |
max-width: 600px;
|
|
|
9 |
max-width: 600px;
|
10 |
max-height: 600px;
|
11 |
}
|
12 |
+
img#visitor-badge {
|
13 |
+
display: block;
|
14 |
+
margin: auto;
|
15 |
+
}
|