Hal-90000 commited on
Commit
54b1b6d
1 Parent(s): b7ba0dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -81
app.py CHANGED
@@ -1,83 +1,27 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
  import torch
5
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
6
- from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
7
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
8
-
9
- dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
10
- device = "cuda" if torch.cuda.is_available() else "cpu"
11
-
12
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
13
- good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
14
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
15
- torch.cuda.empty_cache()
16
-
17
- MAX_SEED = np.iinfo(np.int32).max
18
- MAX_IMAGE_SIZE = 2048
19
-
20
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
21
-
22
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
- generator = torch.Generator().manual_seed(seed)
26
-
27
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
28
- prompt=prompt,
29
- guidance_scale=guidance_scale,
30
- num_inference_steps=num_inference_steps,
31
- width=width,
32
- height=height,
33
- generator=generator,
34
- output_type="pil",
35
- good_vae=good_vae,
36
- ):
37
- yield img, seed
38
-
39
- examples = [
40
- "a tiny astronaut hatching from an egg on the moon",
41
- "a cat holding a sign that says hello world",
42
- "an anime illustration of a wiener schnitzel",
43
- ]
44
-
45
- css = """
46
- #col-container {
47
- margin: 0 auto;
48
- max-width: 520px;
49
- }
50
- """
51
-
52
- with gr.Blocks(css=css) as demo:
53
- with gr.Column(elem_id="col-container"):
54
- gr.Markdown("""# FLUX.1 [dev]
55
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
56
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
57
- """)
58
-
59
- with gr.Row():
60
- prompt = gr.Textbox(
61
- label="Prompt",
62
- show_label=False,
63
- max_lines=1,
64
- placeholder="Enter your prompt",
65
- container=False,
66
- )
67
- run_button = gr.Button("Run", scale=0)
68
-
69
- result = gr.Image(label="Result", show_label=False)
70
-
71
- with gr.Accordion("Advanced Settings", open=False):
72
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
73
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
74
-
75
- with gr.Row():
76
- width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
77
- height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
78
-
79
- with gr.Row():
80
- guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
81
- num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
82
-
83
- gr.Examples(examples=examples, inputs=[prompt], outputs=[
 
1
  import gradio as gr
 
 
2
  import torch
3
+ from diffusers import StableDiffusionPipeline
4
+
5
+ # Cargar el modelo de Stable Diffusion desde Hugging Face
6
+ model_id = "CompVis/stable-diffusion-v1-4"
7
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
8
+ pipe.to("cuda") # Cambiar a CPU si no hay GPU disponible
9
+
10
+ # Función para generar la imagen
11
+ def generar_imagen(texto):
12
+ with torch.autocast("cuda"):
13
+ image = pipe(texto, guidance_scale=7.5).images[0]
14
+ return image
15
+
16
+ # Interfaz de Gradio
17
+ interfaz = gr.Interface(
18
+ fn=generar_imagen,
19
+ inputs="text",
20
+ outputs="image",
21
+ title="Generador de Imágenes con Stable Diffusion",
22
+ description="Escribe una descripción y genera una imagen usando Stable Diffusion."
23
+ )
24
+
25
+ # Ejecuta la aplicación
26
+ if __name__ == "__main__":
27
+ interfaz.launch()