Generative_Art / utils.py
HemaAM's picture
Initial commit of application
5aebe57
raw
history blame
8.09 kB
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
# configurations
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
height, width = 512, 512
guidance_scale = 8
loss_scale = 200
num_inference_steps = 50
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
model_path,
low_cpu_mem_usage = True,
torch_dtype=torch.float32
).to(torch_device)
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
styles_mapping = {
"Illustration Style": '<illustration-style>', "Line Art":'<line-art>',
"Hitokomoru Style":'<hitokomoru-style-nao>', "Marc Allante": '<Marc_Allante>',
"Midjourney":'<midjourney-style>', "Hanfu Anime": '<hanfu-anime-style>',
"Birb Style": '<birb-style>'
}
# Define seeds for all the styles
seed_list = [11, 56, 110, 65, 5, 29, 47]
# Loss Function based on Edge Detection
def edge_detection(image):
channels = image.shape[1]
# Define the kernels for Edge Detection
ed_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
ed_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
# Replicate the Edge detection kernels for each channel
ed_x = ed_x.repeat(channels, 1, 1, 1).to(image.device)
ed_y = ed_y.repeat(channels, 1, 1, 1).to(image.device)
# ed_x = ed_x.to(torch.float16)
# ed_y = ed_y.to(torch.float16)
# Convolve the image with the Edge detection kernels
conv_ed_x = F.conv2d(image, ed_x, padding=1, groups=channels)
conv_ed_y = F.conv2d(image, ed_y, padding=1, groups=channels)
# Combine the x and y gradients after convolution
ed_value = torch.sqrt(conv_ed_x**2 + conv_ed_y**2)
return ed_value
def edge_loss(image):
ed_value = edge_detection(image)
ed_capped = (ed_value > 0.5).to(torch.float32)
return F.mse_loss(ed_value, ed_capped)
def compute_loss(original_image, loss_type):
if loss_type == 'blue':
# blue loss
# [:,2] -> all images in batch, only the blue channel
error = torch.abs(original_image[:,2] - 0.9).mean()
elif loss_type == 'edge':
# edge loss
error = edge_loss(original_image)
elif loss_type == 'contrast':
# RGB to Gray loss
transformed_image = T.functional.adjust_contrast(original_image, contrast_factor = 2)
error = torch.abs(transformed_image - original_image).mean()
elif loss_type == 'brightness':
# brightnesss loss
transformed_image = T.functional.adjust_brightness(original_image, brightness_factor = 2)
error = torch.abs(transformed_image - original_image).mean()
elif loss_type == 'sharpness':
# sharpness loss
transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor = 2)
error = torch.abs(transformed_image - original_image).mean()
elif loss_type == 'saturation':
# saturation loss
transformed_image = T.functional.adjust_saturation(original_image, saturation_factor = 10)
error = torch.abs(transformed_image - original_image).mean()
else:
print("error. Loss not defined")
return error
def get_examples():
examples = [
['A bird sitting on a tree', 'Midjourney', 'edge', 5],
['Cats fighting on the road', 'Marc Allante', 'brightness', 65],
['A mouse with the head of a puppy', 'Hitokomoru Style', 'contrast', 110],
['A woman with a smiling face in front of an Italian Pizza', 'Hanfu Anime', 'brightness', 29],
['A campfire (oil on canvas)', 'Birb Style', 'blue', 47],
]
return(examples)
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = sd_pipeline.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).round().astype("uint8")
return Image.fromarray(image[0])
def show_image(prompt, concept, guidance_type, seed):
prompt = f"{prompt} in the style of {styles_mapping[concept]}"
styled_image_without_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=False))
styled_image_with_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=True))
return([styled_image_without_loss, styled_image_with_loss])
def generate_image(seed, prompt, loss_type, loss_flag=False):
generator = torch.manual_seed(seed)
batch_size = 1
# scheduler
scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
# text embeddings of the prompt
text_input = sd_pipeline.tokenizer(prompt, padding='max_length', max_length = sd_pipeline.tokenizer.model_max_length, truncation= True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
with torch.no_grad():
text_embeddings = sd_pipeline.text_encoder(text_input.input_ids.to(torch_device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = sd_pipeline.tokenizer(
[""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = sd_pipeline.text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) # shape: 2,77,768
# random latent
latents = torch.randn(
(batch_size, sd_pipeline.unet.config.in_channels, height// 8, width //8),
generator = generator,
) .to(torch.float32)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = sd_pipeline.unet(latent_model_input.to(torch.float32), t, encoder_hidden_states=text_embeddings)["sample"]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if loss_flag and i%5 == 0:
latents = latents.detach().requires_grad_()
# the following line alone does not work, it requires change to reduce step only once
# hence commenting it out
#latents_x0 = scheduler.step(noise_pred,t, latents).pred_original_sample
latents_x0 = latents - sigma * noise_pred
# use vae to decode the image
denoised_images = sd_pipeline.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)
loss = compute_loss(denoised_images, loss_type) * loss_scale
#loss = loss.to(torch.float16)
print(f"{i} loss {loss}")
cond_grad = torch.autograd.grad(loss, latents)[0]
latents = latents.detach() - cond_grad * sigma**2
latents = scheduler.step(noise_pred,t, latents).prev_sample
return latents