Spaces:
Runtime error
Runtime error
File size: 1,628 Bytes
9b9cfe1 241b950 9b9cfe1 d96954f 9b9cfe1 d96954f 3b531e0 f411139 9b9cfe1 f411139 9b9cfe1 d50e7dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import torch
import torchvision
from timeit import default_timer as timer
import gradio as gr
from typing import Tuple ,Dict
from model import create_effnetb2_model
import os
with open("classes.txt") as f:
classes= [line.rstrip() for line in f.readlines()]
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=len(classes))
effnetb2.load_state_dict(
torch.load(
f="Cat_Breed_Classifier_12_class_90_acc.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
def predict(img):
start_time = timer()
img = effnetb2_transforms(img).unsqueeze(0)
effnetb2.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(img), dim=1)
pred_labels_and_probs = {
classes[i]: float(pred_probs[0][i]) for i in range(len(classes))
}
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
title = "Cat Breed Classifier Demo 😸"
description = "Gradio Demo for Classifying Cat Breeds of these [12 different types](https://huggingface.co/spaces/Hexii/Cat-Breed-Classifier/blob/main/classes.txt)."
article = "<p style='text-align: center'><a href='https://github.com/Mr-Hexi' target='_blank'>GitHub</a></p> "
example_list = [["examples/" + example] for example in os.listdir("examples")]
app = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=3, label="Predictions"),
gr.Number(label="Prediction time (s)"),
],
examples=example_list,
title=title,
description=description,
article=article,
)
app.launch() |