Spaces:
Sleeping
Sleeping
File size: 11,874 Bytes
1064fad f56cbc6 42861e8 f56cbc6 972e5ee f56cbc6 972e5ee f56cbc6 8becaf9 f5b9942 f56cbc6 8becaf9 f56cbc6 972e5ee f56cbc6 42861e8 f56cbc6 42861e8 f56cbc6 8becaf9 f56cbc6 8becaf9 972e5ee f56cbc6 8becaf9 972e5ee f56cbc6 8becaf9 f56cbc6 8becaf9 f56cbc6 e58c8bb f56cbc6 e58c8bb 1064fad 972e5ee f56cbc6 8becaf9 1064fad f56cbc6 1064fad f56cbc6 8becaf9 1064fad f56cbc6 8becaf9 f56cbc6 1064fad f56cbc6 1064fad 972e5ee e58c8bb 44af224 1064fad 44af224 1064fad 44af224 972e5ee 8becaf9 685ddd1 8becaf9 f56cbc6 e58c8bb 2c59376 f58e444 2c59376 f58e444 e58c8bb f56cbc6 42861e8 44af224 42861e8 f56cbc6 f5b9942 e58c8bb 42861e8 44af224 f5b9942 972e5ee f5b9942 972e5ee 42861e8 972e5ee f5b9942 972e5ee 8becaf9 972e5ee 42861e8 8becaf9 972e5ee f56cbc6 8becaf9 972e5ee f56cbc6 972e5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from huggingface_hub import HfApi, hf_hub_download
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, field_validator
import requests
import boto3
from dotenv import load_dotenv
import os
import uvicorn
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
import safetensors.torch
import torch
from fastapi.responses import StreamingResponse
from tqdm import tqdm
import logging
import json
load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_id: str
pipeline_task: str
input_text: str
@field_validator('model_id')
def validate_model_id(cls, value):
if not value:
raise ValueError("model_id cannot be empty")
return value
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
logger.info(f"Downloading {key} from S3...")
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
logger.info(f"Downloaded {key} from S3 successfully.")
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
logger.error(f"File {key} not found in S3")
raise HTTPException(status_code=404, detail=f"File {key} not found in S3")
def file_exists_in_s3(self, key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
logger.info(f"File {key} exists in S3.")
return True
except self.s3_client.exceptions.ClientError:
logger.info(f"File {key} does not exist in S3.")
return False
def load_model_from_stream(self, model_prefix):
try:
logger.info(f"Loading model {model_prefix}...")
revision = self._get_latest_revision(model_prefix)
if revision is None:
logger.error(f"Could not determine revision for {model_prefix}")
raise ValueError(f"Could not determine revision for {model_prefix}")
config = self._load_config(model_prefix, revision)
if config is None:
logger.error(f"Failed to load config for {model_prefix}")
raise ValueError(f"Failed to load config for {model_prefix}")
model = self._load_model(model_prefix, config, revision)
if model is None:
logger.error(f"Failed to load model {model_prefix}")
raise ValueError(f"Failed to load model {model_prefix}")
return model
except HTTPException as e:
logger.error(f"Error loading model: {e}")
raise
except Exception as e:
logger.exception(f"Unexpected error loading model: {e}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred while loading the model.")
def _load_config(self, model_prefix, revision):
try:
logger.info(f"Downloading config for {model_prefix} (revision {revision})...")
config_path = hf_hub_download(repo_id=model_prefix, filename="config.json", revision=revision)
with open(config_path, "r", encoding="utf-8") as f:
config_dict = json.load(f)
return AutoConfig.from_pretrained(model_prefix, **config_dict)
except Exception as e:
logger.error(f"Error loading config: {e}")
return None
def _load_model(self, model_prefix, config, revision):
try:
logger.info(f"Downloading model files for {model_prefix} (revision {revision})...")
model_files = self._get_model_files(model_prefix, revision)
if not model_files:
logger.error(f"No model files found for {model_prefix}")
return None
state_dict = {}
for model_file in model_files:
logger.info(f"Downloading model file: {model_file}")
file_path = hf_hub_download(repo_id=model_prefix, filename=model_file, revision=revision)
with open(file_path, "rb") as f:
if model_file.endswith(".safetensors"):
shard_state = safetensors.torch.load_file(file_path)
elif model_file.endswith(".bin"):
shard_state = torch.load(f, map_location="cpu")
else:
logger.error(f"Unsupported model file type: {model_file}")
raise ValueError(f"Unsupported model file type: {model_file}")
state_dict.update(shard_state)
model = AutoModelForCausalLM.from_config(config)
model.load_state_dict(state_dict)
return model
except Exception as e:
logger.exception(f"Error loading model: {e}")
return None
def load_tokenizer_from_stream(self, model_prefix):
try:
logger.info(f"Loading tokenizer for {model_prefix}...")
revision = self._get_latest_revision(model_prefix)
if revision is None:
logger.error(f"Could not determine revision for {model_prefix}")
raise ValueError(f"Could not determine revision for {model_prefix}")
tokenizer = self._load_tokenizer(model_prefix, revision)
if tokenizer is None:
logger.error(f"Failed to load tokenizer for {model_prefix}")
raise ValueError(f"Failed to load tokenizer for {model_prefix}")
return tokenizer
except HTTPException as e:
logger.error(f"Error loading tokenizer: {e}")
return None
except Exception as e:
logger.exception(f"Unexpected error loading tokenizer: {e}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred while loading the tokenizer.")
def _load_tokenizer(self, model_prefix, revision):
try:
logger.info(f"Downloading tokenizer for {model_prefix} (revision {revision})...")
tokenizer_path = hf_hub_download(repo_id=model_prefix, filename="tokenizer.json", revision=revision)
return AutoTokenizer.from_pretrained(tokenizer_path)
except Exception as e:
logger.error(f"Error loading tokenizer: {e}")
return None
def _get_model_files(self, model_prefix, revision="main"):
try:
api = HfApi()
model_files = api.list_repo_files(model_prefix, revision=revision)
model_files = [file.rfilename for file in model_files if file.rfilename.endswith(('.bin', '.safetensors'))]
return model_files
except Exception as e:
logger.error(f"Error retrieving model files from Hugging Face: {e}")
raise HTTPException(status_code=500, detail=f"Error retrieving model files from Hugging Face") from e
def download_and_upload_to_s3_url(self, url, s3_key):
logger.info(f"Downloading from {url}...")
with requests.get(url, stream=True) as response:
if response.status_code == 200:
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
logger.info(f"Uploading to S3: {s3_key}...")
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key, Callback=lambda bytes_transferred: progress_bar.update(bytes_transferred))
progress_bar.close()
logger.info(f"Uploaded {s3_key} to S3 successfully.")
elif response.status_code == 404:
logger.error(f"File not found at {url}")
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.")
else:
logger.error(f"Error downloading from {url}: Status code {response.status_code}")
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}")
def _get_latest_revision(self, model_prefix):
try:
api = HfApi()
model_info = api.model_info(model_prefix)
if hasattr(model_info, 'revision'):
revision = model_info.revision
if revision:
return revision
else:
logger.warning(f"No revision found for {model_prefix}, using 'main'")
return "main"
else:
logger.warning(f"ModelInfo object for {model_prefix} does not have a 'revision' attribute, using 'main'")
return "main"
except Exception as e:
logger.error(f"Error getting latest revision for {model_prefix}: {e}")
return None
@app.post("/predict/")
async def predict(model_request: DownloadModelRequest):
try:
logger.info(f"Received request: Model={model_request.model_id}, Task={model_request.pipeline_task}, Input={model_request.input_text}")
model_id = model_request.model_id
task = model_request.pipeline_task
input_text = model_request.input_text
streamer = S3DirectStream(S3_BUCKET_NAME)
logger.info("Loading model and tokenizer...")
model = streamer.load_model_from_stream(model_id)
if model is None:
logger.error(f"Failed to load model {model_id}")
raise HTTPException(status_code=500, detail=f"Failed to load model {model_id}")
tokenizer = streamer.load_tokenizer_from_stream(model_id)
logger.info("Model and tokenizer loaded.")
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]:
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
if task == "text-generation":
logger.info("Starting text generation...")
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
generation_kwargs = dict(inputs, streamer=text_streamer)
model.generate(**generation_kwargs)
logger.info("Text generation finished.")
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream")
else:
logger.info(f"Starting pipeline task: {task}...")
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True)
outputs = nlp_pipeline(input_text)
logger.info(f"Pipeline task {task} finished.")
return {"result": outputs}
except Exception as e:
logger.exception(f"Error processing request: {e}")
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |