Spaces:
Sleeping
Sleeping
File size: 10,491 Bytes
7c21718 9de7b93 7c21718 6e7eb77 7c21718 277e316 7c21718 b5fcdec 7c21718 6e7eb77 7c21718 6e7eb77 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 6e7eb77 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 6e7eb77 b5fcdec 6e7eb77 b5fcdec 6e7eb77 b5fcdec 6e7eb77 277e316 6e7eb77 277e316 b5fcdec 6e7eb77 277e316 6e7eb77 b5fcdec 6e7eb77 277e316 6e7eb77 277e316 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 b5fcdec 7c21718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import (
AutoConfig,
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
GenerationConfig,
StoppingCriteriaList
)
import boto3
import uvicorn
import asyncio
from io import BytesIO
from transformers import pipeline
import json
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
s3_uri = self._get_s3_uri(model_name)
try:
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
model = AutoModelForSeq2SeqLM.from_pretrained(s3_uri, config=config, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
return model, tokenizer
except EnvironmentError:
try:
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, config=config)
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
chunk_delay = request.chunk_delay
stop_sequences = request.stop_sequences
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
)
return StreamingResponse(
stream_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device, chunk_delay),
media_type="text/plain"
)
except Exception as e:
raise HTTPException(status_code=500,
detail=f"Internal server error: {str(e)}")
async def stream_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device, chunk_delay, max_length=2048):
encoded_input = tokenizer(input_text,
return_tensors="pt",
truncation=True,
max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
yield ""
generation_config.max_new_tokens = min(
remaining_tokens, generation_config.max_new_tokens
)
def find_stop(output_text, stop_sequences):
for seq in stop_sequences:
if seq in output_text:
last_index = output_text.rfind(seq)
return last_index + len(seq)
return -1
output_text = ""
while True:
outputs = model.generate(
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
output_scores=True,
return_dict_in_generate=True,
)
new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):], skip_special_tokens=True)
output_text += new_text
stop_index = find_stop(output_text, stop_sequences)
if stop_index != -1:
final_output = output_text[:stop_index]
chunked_output = [final_output[i:i+10] for i in range(0, len(final_output), 10)]
for chunk in chunked_output:
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
await asyncio.sleep(chunk_delay)
yield json.dumps({"text": "", "is_end": True}) + "\n"
break
else:
chunked_output = [new_text[i:i+10] for i in range(0, len(new_text), 10)]
for chunk in chunked_output:
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
await asyncio.sleep(chunk_delay)
if len(output_text) >= generation_config.max_new_tokens:
chunked_output = [output_text[i:i+10] for i in range(0, len(output_text), 10)]
for chunk in chunked_output:
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
await asyncio.sleep(chunk_delay)
yield json.dumps({"text": "", "is_end": True}) + "\n"
break
encoded_input = tokenizer(output_text,
return_tensors="pt",
truncation=True,
max_length=max_length).to(device)
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
image_generator = pipeline("text-to-image",
model=validated_body.model_name,
device=device)
image = image_generator(validated_body.input_text)[0]
img_byte_arr = BytesIO()
image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500,
detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
audio_generator = pipeline("text-to-speech",
model=validated_body.model_name,
device=device)
audio = audio_generator(validated_body.input_text)[0]
audio_byte_arr = BytesIO()
audio.save(audio_byte_arr)
audio_byte_arr.seek(0)
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
except Exception as e:
raise HTTPException(status_code=500,
detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
video_generator = pipeline("text-to-video",
model=validated_body.model_name,
device=device)
video = video_generator(validated_body.input_text)[0]
video_byte_arr = BytesIO()
video.save(video_byte_arr)
video_byte_arr.seek(0)
return StreamingResponse(video_byte_arr,
media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500,
detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |