File size: 10,491 Bytes
7c21718
 
9de7b93
7c21718
 
 
 
 
6e7eb77
7c21718
 
 
 
 
 
 
 
 
277e316
7c21718
 
 
 
 
 
 
b5fcdec
 
 
7c21718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e7eb77
7c21718
 
 
 
 
 
 
 
 
 
6e7eb77
7c21718
 
 
 
 
 
 
 
 
b5fcdec
7c21718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5fcdec
 
 
7c21718
 
b5fcdec
7c21718
b5fcdec
 
 
6e7eb77
b5fcdec
 
 
 
 
 
 
7c21718
 
 
 
 
 
b5fcdec
 
 
 
 
 
 
 
 
7c21718
b5fcdec
 
7c21718
b5fcdec
 
 
6e7eb77
 
 
 
 
 
 
 
 
 
b5fcdec
 
 
 
 
 
6e7eb77
b5fcdec
 
6e7eb77
b5fcdec
6e7eb77
 
 
 
 
 
 
277e316
 
6e7eb77
 
277e316
b5fcdec
6e7eb77
 
 
 
277e316
6e7eb77
 
b5fcdec
 
6e7eb77
 
 
 
277e316
6e7eb77
277e316
b5fcdec
7c21718
b5fcdec
 
 
 
7c21718
 
 
 
 
 
b5fcdec
 
 
 
7c21718
 
 
 
 
 
 
b5fcdec
7c21718
b5fcdec
 
 
7c21718
 
 
 
 
 
b5fcdec
 
 
7c21718
 
 
 
 
 
 
 
 
b5fcdec
 
7c21718
 
 
 
 
 
b5fcdec
 
 
7c21718
 
 
 
 
 
b5fcdec
 
 
7c21718
b5fcdec
 
7c21718
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import (
    AutoConfig,
    pipeline,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    GenerationConfig,
    StoppingCriteriaList
)
import boto3
import uvicorn
import asyncio
from io import BytesIO
from transformers import pipeline
import json

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
                         aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
                         region_name=AWS_REGION)

app = FastAPI()

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = True
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: list[str] = []

    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v

    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"

    async def load_model_and_tokenizer(self, model_name):
        s3_uri = self._get_s3_uri(model_name)
        try:
            config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
            model = AutoModelForSeq2SeqLM.from_pretrained(s3_uri, config=config, local_files_only=True)
            tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)

            if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
                tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id

            return model, tokenizer
        except EnvironmentError:
            try:
                config = AutoConfig.from_pretrained(model_name)
                tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
                model = AutoModelForSeq2SeqLM.from_pretrained(model_name, config=config)

                if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
                    tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id

                model.save_pretrained(s3_uri)
                tokenizer.save_pretrained(s3_uri)
                return model, tokenizer
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
            
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        model_name = request.model_name
        input_text = request.input_text
        task_type = request.task_type
        temperature = request.temperature
        max_new_tokens = request.max_new_tokens
        stream = request.stream
        top_p = request.top_p
        top_k = request.top_k
        repetition_penalty = request.repetition_penalty
        num_return_sequences = request.num_return_sequences
        do_sample = request.do_sample
        chunk_delay = request.chunk_delay
        stop_sequences = request.stop_sequences

        model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        generation_config = GenerationConfig(
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            do_sample=do_sample,
            num_return_sequences=num_return_sequences,
        )

        return StreamingResponse(
            stream_text(model, tokenizer, input_text,
                         generation_config, stop_sequences,
                         device, chunk_delay),
            media_type="text/plain"
        )
    
    except Exception as e:
        raise HTTPException(status_code=500,
                            detail=f"Internal server error: {str(e)}")


async def stream_text(model, tokenizer, input_text,
                        generation_config, stop_sequences,
                        device, chunk_delay, max_length=2048):
    encoded_input = tokenizer(input_text,
                               return_tensors="pt",
                               truncation=True,
                               max_length=max_length).to(device)
    input_length = encoded_input["input_ids"].shape[1]
    remaining_tokens = max_length - input_length

    if remaining_tokens <= 0:
        yield ""

    generation_config.max_new_tokens = min(
        remaining_tokens, generation_config.max_new_tokens
    )
    
    def find_stop(output_text, stop_sequences):
        for seq in stop_sequences:
            if seq in output_text:
                last_index = output_text.rfind(seq)
                return last_index + len(seq)

        return -1
    
    output_text = ""
    
    while True:
        outputs = model.generate(
            **encoded_input,
            do_sample=generation_config.do_sample,
            max_new_tokens=generation_config.max_new_tokens,
            temperature=generation_config.temperature,
            top_p=generation_config.top_p,
            top_k=generation_config.top_k,
            repetition_penalty=generation_config.repetition_penalty,
            num_return_sequences=generation_config.num_return_sequences,
            output_scores=True,
            return_dict_in_generate=True,
        )
    
        new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):], skip_special_tokens=True)
        
        output_text += new_text
        
        
        
        stop_index = find_stop(output_text, stop_sequences)
        
        if stop_index != -1:
            final_output = output_text[:stop_index]
            
            
            
            chunked_output = [final_output[i:i+10] for i in range(0, len(final_output), 10)]
            
            for chunk in chunked_output:
              
                yield json.dumps({"text": chunk, "is_end": False}) + "\n"
                await asyncio.sleep(chunk_delay)
                
            yield json.dumps({"text": "", "is_end": True}) + "\n"
            break
                
        else:
            chunked_output = [new_text[i:i+10] for i in range(0, len(new_text), 10)]
            for chunk in chunked_output:
                yield json.dumps({"text": chunk, "is_end": False}) + "\n"
                await asyncio.sleep(chunk_delay)
                
        
        if len(output_text) >= generation_config.max_new_tokens:
            
            chunked_output = [output_text[i:i+10] for i in range(0, len(output_text), 10)]
            
            for chunk in chunked_output:
                yield json.dumps({"text": chunk, "is_end": False}) + "\n"
                await asyncio.sleep(chunk_delay)
            yield json.dumps({"text": "", "is_end": True}) + "\n"
            break

        encoded_input = tokenizer(output_text,
                               return_tensors="pt",
                               truncation=True,
                               max_length=max_length).to(device)

@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"

        image_generator = pipeline("text-to-image",
                                    model=validated_body.model_name,
                                    device=device)
        image = image_generator(validated_body.input_text)[0]

        img_byte_arr = BytesIO()
        image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)

        return StreamingResponse(img_byte_arr, media_type="image/png")
    
    except Exception as e:
        raise HTTPException(status_code=500,
                             detail=f"Internal server error: {str(e)}")
    
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        audio_generator = pipeline("text-to-speech",
                                    model=validated_body.model_name,
                                    device=device)
        audio = audio_generator(validated_body.input_text)[0]

        audio_byte_arr = BytesIO()
        audio.save(audio_byte_arr)
        audio_byte_arr.seek(0)

        return StreamingResponse(audio_byte_arr, media_type="audio/wav")

    except Exception as e:
         raise HTTPException(status_code=500,
                             detail=f"Internal server error: {str(e)}")

@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        video_generator = pipeline("text-to-video",
                                    model=validated_body.model_name,
                                    device=device)
        video = video_generator(validated_body.input_text)[0]

        video_byte_arr = BytesIO()
        video.save(video_byte_arr)
        video_byte_arr.seek(0)

        return StreamingResponse(video_byte_arr,
                                 media_type="video/mp4")
    
    except Exception as e:
         raise HTTPException(status_code=500,
                            detail=f"Internal server error: {str(e)}")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)