Spaces:
Sleeping
Sleeping
File size: 7,640 Bytes
f56cbc6 3a145aa f56cbc6 3a145aa 972e5ee 3a145aa f56cbc6 8becaf9 3a145aa f56cbc6 972e5ee f56cbc6 3a145aa f56cbc6 972e5ee f56cbc6 3a145aa f56cbc6 3a145aa f56cbc6 e58c8bb f56cbc6 3a145aa b88653d 3a145aa f56cbc6 3a145aa b88653d 3a145aa ec488c7 3a145aa ec488c7 3a145aa f56cbc6 3a145aa f56cbc6 3a145aa 3504082 3a145aa 972e5ee 540ad6f 3a145aa e58c8bb f56cbc6 3a145aa 42861e8 3a145aa 972e5ee 3a145aa 972e5ee 3a145aa 972e5ee 3a145aa f56cbc6 3a145aa 972e5ee f56cbc6 972e5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import requests
import boto3
from dotenv import load_dotenv
import os
import uvicorn
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import safetensors.torch
from fastapi.responses import StreamingResponse
from tqdm import tqdm
import re
load_dotenv()
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar de S3: {e}")
def file_exists_in_s3(self, key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
return True
except self.s3_client.exceptions.ClientError as e:
if e.response['Error']['Code'] == '404':
return False
raise HTTPException(status_code=500, detail=f"Error al verificar archivo en S3: {e}")
def load_model_from_stream(self, model_prefix):
try:
model_files = self.list_model_files(model_prefix)
if not model_files:
self.download_and_upload_to_s3(model_prefix)
return self.load_model_from_stream(model_prefix)
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
config_data = config_stream.read().decode("utf-8")
model_path = f"{model_prefix}/model.safetensors"
if self.file_exists_in_s3(model_path):
model_stream = self.stream_from_s3(model_path)
model = AutoModelForCausalLM.from_config(config_data)
model.load_state_dict(safetensors.torch.load_stream(model_stream))
elif model_files:
model = AutoModelForCausalLM.from_config(config_data)
state_dict = {}
for file_name in model_files:
file_stream = self.stream_from_s3(f"{model_prefix}/{file_name}")
tmp = torch.load(file_stream, map_location="cpu")
state_dict.update(tmp)
model.load_state_dict(state_dict)
else:
raise HTTPException(status_code=500, detail="Modelo no encontrado")
return model
except HTTPException as e:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {e}")
def list_model_files(self, model_prefix):
try:
response = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"{model_prefix}/pytorch_model-")
model_files = []
if 'Contents' in response:
for obj in response['Contents']:
if re.match(r"pytorch_model-\d+-of-\d+", obj['Key'].split('/')[-1]):
model_files.append(obj['Key'].split('/')[-1])
return model_files
except Exception as e:
return None
def load_tokenizer_from_stream(self, model_prefix):
try:
tokenizer_path = f"{model_prefix}/tokenizer.json"
if self.file_exists_in_s3(tokenizer_path):
tokenizer_stream = self.stream_from_s3(tokenizer_path)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream)
return tokenizer
else:
self.download_and_upload_to_s3(model_prefix)
return self.load_tokenizer_from_stream(model_prefix)
except HTTPException as e:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer: {e}")
def download_and_upload_to_s3(self, model_prefix):
urls = {
"pytorch_model.bin": f"https://huggingface.co/{model_prefix}/resolve/main/pytorch_model.bin",
"model.safetensors": f"https://huggingface.co/{model_prefix}/resolve/main/model.safetensors",
"tokenizer.json": f"https://huggingface.co/{model_prefix}/resolve/main/tokenizer.json",
"config.json": f"https://huggingface.co/{model_prefix}/resolve/main/config.json"
}
for filename, url in urls.items():
try:
response = requests.get(url, stream=True)
response.raise_for_status()
self.s3_client.upload_fileobj(response.raw, self.bucket_name, f"{model_prefix}/{filename}")
except requests.exceptions.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {filename}: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al subir {filename} a S3: {e}")
@app.post("/predict/")
async def predict(model_request: DownloadModelRequest):
try:
streamer = S3DirectStream(S3_BUCKET_NAME)
model = streamer.load_model_from_stream(model_request.model_name)
tokenizer = streamer.load_tokenizer_from_stream(model_request.model_name)
task = model_request.pipeline_task
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "text-to-speech", "text-to-image", "text-to-audio", "text-to-video"]:
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer)
input_text = model_request.input_text
outputs = nlp_pipeline(input_text)
if task in ["text-generation", "translation", "fill-mask", "sentiment-analysis", "question-answering"]:
return {"response": outputs}
elif task == "text-to-image":
s3_key = f"{model_request.model_name}/generated_image.png"
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="image/png")
elif task == "text-to-audio":
s3_key = f"{model_request.model_name}/generated_audio.wav"
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="audio/wav")
elif task == "text-to-video":
s3_key = f"{model_request.model_name}/generated_video.mp4"
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="video/mp4")
else:
raise HTTPException(status_code=400, detail="Tipo de tarea desconocido")
except HTTPException as e:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error inesperado: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |