Spaces:
Sleeping
Sleeping
File size: 7,096 Bytes
014edf2 5d00129 1949d3a 5d00129 1949d3a 5d00129 014edf2 1949d3a 014edf2 1949d3a 5d00129 014edf2 5d00129 014edf2 5d00129 014edf2 5d00129 014edf2 5d00129 14b15cb 5d00129 014edf2 1949d3a 5d00129 014edf2 5d00129 67f13e5 5d00129 6e677d2 5d00129 014edf2 1949d3a 014edf2 1949d3a 014edf2 5d00129 014edf2 7ab73bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
import logging
import time
from io import BytesIO
from fastapi import FastAPI, HTTPException, Response, Request
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
GenerationConfig
)
import boto3
from huggingface_hub import hf_hub_download
import soundfile as sf
import numpy as np
import torch
import uvicorn
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
s3_uri = self._get_s3_uri(model_name)
try:
logging.info(f"Trying to load {model_name} from S3...")
config = AutoConfig.from_pretrained(s3_uri)
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config)
tokenizer = AutoTokenizer.from_pretrained(s3_uri)
logging.info(f"Loaded {model_name} from S3 successfully.")
return model, tokenizer
except EnvironmentError:
logging.info(f"Model {model_name} not found in S3. Downloading...")
try:
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}", disable=False) as t:
model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
logging.info(f"Downloaded {model_name} successfully.")
logging.info(f"Saving {model_name} to S3...")
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
logging.info(f"Saved {model_name} to S3 successfully.")
return model, tokenizer
except Exception as e:
logging.error(f"Error downloading/uploading model: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
app = FastAPI()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=body.temperature,
max_new_tokens=body.max_new_tokens,
top_p=body.top_p,
top_k=body.top_k,
repetition_penalty=body.repetition_penalty,
do_sample=body.do_sample,
num_return_sequences=body.num_return_sequences
)
async def stream_text():
input_text = body.input_text
generated_text = ""
max_length = model.config.max_position_embeddings
while True:
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
break
generation_config.max_new_tokens = min(remaining_tokens, body.max_new_tokens)
output = model.generate(**encoded_input, generation_config=generation_config)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
time.sleep(body.chunk_delay)
input_text = generated_text
if body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif body.task_type == "text-to-audio":
generator = pipeline("text-to-audio", model=model, tokenizer=tokenizer, device=device)
audio = generator(body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |