Spaces:
Sleeping
Sleeping
File size: 10,363 Bytes
f56cbc6 972e5ee f56cbc6 972e5ee f56cbc6 8becaf9 f5b9942 f56cbc6 8becaf9 f56cbc6 972e5ee f56cbc6 972e5ee f56cbc6 f5b9942 f56cbc6 8becaf9 f56cbc6 8becaf9 972e5ee f56cbc6 8becaf9 972e5ee f56cbc6 8becaf9 f56cbc6 8becaf9 f56cbc6 8becaf9 f5b9942 f56cbc6 8becaf9 f56cbc6 972e5ee 8becaf9 972e5ee 8becaf9 f56cbc6 8becaf9 f56cbc6 f5b9942 f56cbc6 8becaf9 f56cbc6 f5b9942 8becaf9 f56cbc6 f5b9942 f56cbc6 8becaf9 f56cbc6 972e5ee 8becaf9 f5b9942 972e5ee 8becaf9 f56cbc6 972e5ee 8becaf9 972e5ee 8becaf9 972e5ee 8becaf9 f5b9942 f56cbc6 8becaf9 f5b9942 f56cbc6 8becaf9 f56cbc6 8becaf9 f5b9942 8becaf9 972e5ee 8becaf9 f56cbc6 8becaf9 f56cbc6 f5b9942 f56cbc6 8becaf9 f56cbc6 f5b9942 8becaf9 f56cbc6 972e5ee f5b9942 972e5ee f56cbc6 f5b9942 8becaf9 f56cbc6 8becaf9 972e5ee 8becaf9 f5b9942 8becaf9 f5b9942 8becaf9 f5b9942 8becaf9 f56cbc6 8becaf9 f5b9942 f56cbc6 f5b9942 f56cbc6 f5b9942 f56cbc6 f5b9942 f56cbc6 972e5ee f5b9942 972e5ee f5b9942 972e5ee f5b9942 972e5ee 8becaf9 972e5ee 8becaf9 972e5ee f5b9942 f56cbc6 8becaf9 972e5ee f56cbc6 f5b9942 f56cbc6 972e5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
from huggingface_hub import HfApi
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import requests
import boto3
from dotenv import load_dotenv
import os
import uvicorn
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
import safetensors.torch
import torch
from fastapi.responses import StreamingResponse
from tqdm import tqdm
import logging
import json
load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
revision: str = "main"
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
logger.info(f"Downloading {key} from S3...")
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
logger.info(f"Downloaded {key} from S3 successfully.")
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
logger.error(f"File {key} not found in S3")
raise HTTPException(status_code=404, detail=f"File {key} not found in S3")
def file_exists_in_s3(self, key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
logger.info(f"File {key} exists in S3.")
return True
except self.s3_client.exceptions.ClientError:
logger.info(f"File {key} does not exist in S3.")
return False
def load_model_from_stream(self, model_prefix, revision):
try:
logger.info(f"Loading model {model_prefix} (revision {revision})...")
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")):
logger.info(f"Model {model_prefix} found in S3. Loading...")
return self.load_model_from_existing_s3(model_prefix)
logger.info(f"Model {model_prefix} not found in S3. Downloading and uploading...")
self.download_and_upload_to_s3(model_prefix, revision)
logger.info(f"Downloaded and uploaded {model_prefix}. Loading from S3...")
return self.load_model_from_stream(model_prefix, revision)
except HTTPException as e:
logger.error(f"Error loading model: {e}")
return None
def load_model_from_existing_s3(self, model_prefix):
logger.info(f"Loading config for {model_prefix} from S3...")
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
config_dict = json.load(config_stream)
config = AutoConfig.from_pretrained(config_dict)
logger.info(f"Config loaded for {model_prefix}.")
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"):
logger.info(f"Loading safetensors model for {model_prefix} from S3...")
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors")
model = AutoModelForCausalLM.from_config(config)
model.load_state_dict(safetensors.torch.load_stream(model_stream))
logger.info(f"Safetensors model loaded for {model_prefix}.")
elif self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin"):
logger.info(f"Loading PyTorch model for {model_prefix} from S3...")
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin")
model = AutoModelForCausalLM.from_config(config)
state_dict = torch.load(model_stream, map_location="cpu")
model.load_state_dict(state_dict)
logger.info(f"PyTorch model loaded for {model_prefix}.")
else:
logger.error(f"No model file found for {model_prefix} in S3")
raise EnvironmentError(f"No model file found for {model_prefix} in S3")
return model
def load_tokenizer_from_stream(self, model_prefix):
try:
logger.info(f"Loading tokenizer for {model_prefix}...")
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
logger.info(f"Tokenizer for {model_prefix} found in S3. Loading...")
return self.load_tokenizer_from_existing_s3(model_prefix)
logger.info(f"Tokenizer for {model_prefix} not found in S3. Downloading and uploading...")
self.download_and_upload_to_s3(model_prefix)
logger.info(f"Downloaded and uploaded tokenizer for {model_prefix}. Loading from S3...")
return self.load_tokenizer_from_stream(model_prefix)
except HTTPException as e:
logger.error(f"Error loading tokenizer: {e}")
return None
def load_tokenizer_from_existing_s3(self, model_prefix):
logger.info(f"Loading tokenizer from S3 for {model_prefix}...")
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json")
tokenizer_config = json.load(tokenizer_stream) # Corrected this line
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=None, config=tokenizer_config) # Corrected this line
logger.info(f"Tokenizer loaded for {model_prefix}.")
return tokenizer
def download_and_upload_to_s3(self, model_prefix, revision="main"):
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin"
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors"
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json"
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json"
logger.info(f"Downloading and uploading model files for {model_prefix} to S3...")
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin")
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors")
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json")
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json")
logger.info(f"Finished downloading and uploading model files for {model_prefix}.")
def download_and_upload_to_s3_url(self, url, s3_key):
logger.info(f"Downloading from {url}...")
with requests.get(url, stream=True) as response:
if response.status_code == 200:
total_size_in_bytes= int(response.headers.get('content-length', 0))
block_size = 1024
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
logger.info(f"Uploading to S3: {s3_key}...")
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key, Callback=lambda bytes_transferred: progress_bar.update(bytes_transferred))
progress_bar.close()
logger.info(f"Uploaded {s3_key} to S3 successfully.")
elif response.status_code == 404:
logger.error(f"File not found at {url}")
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.")
else:
logger.error(f"Error downloading from {url}: Status code {response.status_code}")
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}")
@app.post("/predict/")
async def predict(model_request: DownloadModelRequest):
try:
logger.info(f"Received request: Model={model_request.model_name}, Task={model_request.pipeline_task}, Input={model_request.input_text}")
model_name = model_request.model_name
revision = model_request.revision
streamer = S3DirectStream(S3_BUCKET_NAME)
logger.info("Loading model and tokenizer...")
model = streamer.load_model_from_stream(model_name, revision)
tokenizer = streamer.load_tokenizer_from_stream(model_name)
logger.info("Model and tokenizer loaded.")
task = model_request.pipeline_task
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]:
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
if task == "text-generation":
logger.info("Starting text generation...")
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
inputs = tokenizer(model_request.input_text, return_tensors="pt").to(model.device)
generation_kwargs = dict(inputs, streamer=text_streamer)
model.generate(**generation_kwargs)
logger.info("Text generation finished.")
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream")
else:
logger.info(f"Starting pipeline task: {task}...")
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True)
outputs = nlp_pipeline(model_request.input_text)
logger.info(f"Pipeline task {task} finished.")
return {"result": outputs}
except Exception as e:
logger.exception(f"Error processing request: {e}")
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |