File size: 7,631 Bytes
410390c
227ec7b
0e63678
410390c
 
0e63678
00a3421
631e498
 
00a3421
0e63678
 
410390c
 
 
 
0e63678
631e498
 
410390c
 
 
 
 
 
 
 
 
 
0e63678
 
 
 
 
 
 
 
 
 
410390c
 
 
 
 
 
 
 
 
 
 
631e498
 
 
 
 
410390c
 
0e63678
410390c
 
 
0e63678
410390c
631e498
 
 
 
 
410390c
0e63678
 
 
 
 
 
d44fda2
631e498
d44fda2
0a0a222
 
 
631e498
299d616
 
 
 
631e498
0e63678
 
 
 
 
 
 
 
 
d44fda2
410390c
0a0a222
 
d44fda2
631e498
 
 
d44fda2
0a0a222
57437b7
631e498
0e63678
57437b7
9125939
d44fda2
 
0e63678
d44fda2
631e498
0a0a222
 
 
 
631e498
f8e43db
0a0a222
 
 
 
 
631e498
c32fab0
 
 
 
 
 
631e498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410390c
0e63678
410390c
0e63678
 
 
 
c32fab0
 
 
410390c
f8e43db
 
 
631e498
 
410390c
0e63678
d44fda2
410390c
0e63678
410390c
631e498
 
 
0e63678
631e498
 
 
 
 
0e63678
 
227ec7b
0e63678
 
410390c
 
0e63678
1642e7d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import asyncio
import concurrent.futures

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")

MAX_TOKENS = 1024  # Limite de tokens por fragmento

s3_client = boto3.client(
    's3',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
    region_name=AWS_REGION
)

app = FastAPI()

PIPELINE_MAP = {
    "text-generation": "text-generation",
    "sentiment-analysis": "sentiment-analysis",
    "translation": "translation",
    "fill-mask": "fill-mask",
    "question-answering": "question-answering",
    "text-to-speech": "text-to-speech",
    "text-to-video": "text-to-video",
    "text-to-image": "text-to-image"
}

class S3DirectStream:
    def __init__(self, bucket_name):
        self.s3_client = boto3.client(
            's3',
            aws_access_key_id=AWS_ACCESS_KEY_ID,
            aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
            region_name=AWS_REGION
        )
        self.bucket_name = bucket_name

    async def stream_from_s3(self, key):
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._stream_from_s3, key)

    def _stream_from_s3(self, key):
        try:
            response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
            return response['Body']
        except self.s3_client.exceptions.NoSuchKey:
            raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")

    async def get_model_file_parts(self, model_name):
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._get_model_file_parts, model_name)

    def _get_model_file_parts(self, model_name):
        try:
            model_prefix = model_name.lower()
            files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
            model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
            return model_files
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")

    async def load_model_from_s3(self, model_name):
        try:
            profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)

            model_prefix = f"{profile}/{model}".lower()
            model_files = await self.get_model_file_parts(model_prefix)

            if not model_files:
                raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")

            config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
            config_data = config_stream.read()

            if not config_data:
                raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.")
            
            config_text = config_data.decode("utf-8")
            config_json = json.loads(config_text)

            model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
            return model

        except HTTPException as e:
            raise e
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")

    async def load_tokenizer_from_s3(self, model_name):
        try:
            profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)

            tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
            tokenizer_data = tokenizer_stream.read().decode("utf-8")

            tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
            return tokenizer
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")

    async def create_s3_folders(self, s3_key):
        try:
            folder_keys = s3_key.split('/')
            for i in range(1, len(folder_keys)):
                folder_key = '/'.join(folder_keys[:i]) + '/'
                if not await self.file_exists_in_s3(folder_key):
                    logger.info(f"Creando carpeta en S3: {folder_key}")
                    self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')

        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")

    async def file_exists_in_s3(self, s3_key):
        try:
            self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
            return True
        except self.s3_client.exceptions.ClientError:
            return False

def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
    tokens = tokenizer.encode(text)
    chunks = []
    for i in range(0, len(tokens), max_tokens):
        chunk = tokens[i:i+max_tokens]
        chunks.append(tokenizer.decode(chunk))
    return chunks

def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
    generated_text = ""
    while len(input_text) > 0:
        tokens = tokenizer.encode(input_text)
        input_text = tokenizer.decode(tokens[:max_tokens])
        output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
        generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
        input_text = input_text[len(input_text):]  # Si la entrada se agot贸, ya no hay m谩s que procesar
    return generated_text

@app.post("/predict/")
async def predict(model_request: dict):
    try:
        model_name = model_request.get("model_name")
        task = model_request.get("pipeline_task")
        input_text = model_request.get("input_text")

        if not model_name or not task or not input_text:
            raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")

        streamer = S3DirectStream(S3_BUCKET_NAME)
        
        await streamer.create_s3_folders(model_name)  # Crear las carpetas si no existen

        model = await streamer.load_model_from_s3(model_name)
        tokenizer = await streamer.load_tokenizer_from_s3(model_name)

        if task not in PIPELINE_MAP:
            raise HTTPException(status_code=400, detail="Pipeline task no soportado")

        nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)

        result = await asyncio.to_thread(nlp_pipeline, input_text)

        chunks = split_text_by_tokens(result, tokenizer)

        if len(chunks) > 1:
            full_result = ""
            for chunk in chunks:
                full_result += continue_generation(chunk, model, tokenizer)
            return JSONResponse(content={"result": full_result})
        else:
            return JSONResponse(content={"result": result})

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)