aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
0598c12 verified
raw
history blame
9.14 kB
import os
import logging
import threading
import boto3
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList, pipeline
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, field_validator
from huggingface_hub import hf_hub_download
import requests
import time
import asyncio
from fastapi.responses import StreamingResponse, Response
import torch
from io import BytesIO
import numpy as np
import soundfile as sf
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
app = FastAPI()
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
def _download_from_s3(self, model_name):
try:
logging.info(f"Attempting to load model {model_name} from S3...")
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
if "Contents" not in model_files:
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
return s3_model_path
except Exception as e:
logging.error(f"Error downloading from S3: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
def download_model_from_huggingface(self, model_name):
try:
logging.info(f"Downloading model {model_name} from Hugging Face...")
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
model_files = os.listdir(model_dir)
for model_file in model_files:
s3_path = f"lilmeaty_garca/{model_name}/{model_file}"
self.s3_client.upload_file(os.path.join(model_dir, model_file), self.bucket_name, s3_path)
logging.info(f"Model {model_name} saved to S3 successfully.")
except Exception as e:
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
def download_all_models_in_background(self):
models_url = "https://huggingface.co/api/models"
try:
response = requests.get(models_url)
if response.status_code != 200:
logging.error("Error getting Hugging Face model list.")
raise HTTPException(status_code=500, detail="Error getting model list.")
models = response.json()
for model in models:
model_name = model["id"]
self.download_model_from_huggingface(model_name)
except Exception as e:
logging.error(f"Error downloading models in the background: {e}")
raise HTTPException(status_code=500, detail="Error downloading models in the background.")
def run_in_background(self):
threading.Thread(target=self.download_all_models_in_background, daemon=True).start()
def load_model_and_tokenizer(self, model_name):
try:
model_uri = self._download_from_s3(model_name)
model = AutoModelForCausalLM.from_pretrained(model_uri)
tokenizer = AutoTokenizer.from_pretrained(model_uri)
logging.info(f"Model {model_name} loaded successfully from {model_uri}.")
return model, tokenizer
except Exception as e:
logging.error(f"Error loading model {model_name}: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model {model_name}: {e}")
@app.on_event("startup")
async def startup_event():
model_loader.run_in_background()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
validated_body = GenerateRequest(**body.model_dump())
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if validated_body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=validated_body.temperature,
max_new_tokens=validated_body.max_new_tokens,
top_p=validated_body.top_p,
top_k=validated_body.top_k,
repetition_penalty=validated_body.repetition_penalty,
do_sample=validated_body.do_sample,
num_return_sequences=validated_body.num_return_sequences
)
async def stream_text():
input_text = validated_body.input_text
generated_text = ""
max_length = model.config.max_position_embeddings
while True:
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
break
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
stopping_criteria = StoppingCriteriaList(
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
)
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
time.sleep(validated_body.chunk_delay)
input_text = generated_text
if validated_body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif validated_body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(validated_body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif validated_body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(validated_body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["samples"], audio["rate"], format="WAV")
audio_bytesio.seek(0)
return StreamingResponse(audio_bytesio, media_type="audio/wav")
elif validated_body.task_type == "text-to-video":
return {"error": "Text-to-video task type is not yet supported."}
else:
raise HTTPException(status_code=400, detail="Invalid task type")
except Exception as e:
logging.error(f"Error during generation: {e}")
raise HTTPException(status_code=500, detail=f"Internal Server Error: {e}")
import uvicorn
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)