File size: 9,144 Bytes
f56cbc6
2957fb3
c11082c
800f3c5
ef91d2c
ca9b40d
e619e74
0c65dc8
800f3c5
16cb5fc
7f05389
 
16cb5fc
6742879
 
 
f56cbc6
0c65dc8
f56cbc6
86535fc
 
f56cbc6
 
 
2957fb3
 
f56cbc6
2957fb3
3a145aa
0c65dc8
2957fb3
 
 
 
 
 
 
 
 
0c65dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7150020
2957fb3
 
f56cbc6
2957fb3
f56cbc6
2957fb3
d594fbc
c11082c
0c65dc8
f56cbc6
0c65dc8
d594fbc
0c65dc8
 
16cb5fc
 
 
0c65dc8
 
 
2957fb3
0c65dc8
c11082c
0c65dc8
ef91d2c
6742879
 
 
 
0c65dc8
c11082c
0c65dc8
ef91d2c
c11082c
0c65dc8
 
c11082c
0c65dc8
 
 
 
 
 
 
 
c11082c
0c65dc8
 
 
 
 
 
ef91d2c
 
 
 
 
 
 
 
 
 
 
0c65dc8
 
 
b88653d
abecee2
 
 
2957fb3
0c65dc8
f56cbc6
0c65dc8
 
2957fb3
 
 
0c65dc8
2957fb3
0c65dc8
 
 
 
 
 
 
2957fb3
 
 
0c65dc8
c11082c
0c65dc8
2957fb3
 
0c65dc8
 
2957fb3
 
0c65dc8
 
 
 
 
 
 
 
 
 
2957fb3
 
 
0c65dc8
 
2957fb3
0c65dc8
2957fb3
 
 
 
 
 
 
0c65dc8
2957fb3
0c65dc8
2957fb3
 
 
0c65dc8
2957fb3
0c65dc8
2957fb3
ef91d2c
 
 
2957fb3
0c65dc8
ef91d2c
972e5ee
ef91d2c
972e5ee
f56cbc6
ef91d2c
 
 
 
 
 
0598c12
16cb5fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import logging
import threading
import boto3
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList, pipeline
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, field_validator
from huggingface_hub import hf_hub_download
import requests
import time
import asyncio
from fastapi.responses import StreamingResponse, Response
import torch
from io import BytesIO
import numpy as np
import soundfile as sf

logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")

app = FastAPI()

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str = ""
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = False
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: list[str] = []

    @field_validator("model_name")
    def model_name_cannot_be_empty(cls, v):
        if not v:
            raise ValueError("model_name cannot be empty.")
        return v

    @field_validator("task_type")
    def task_type_must_be_valid(cls, v):
        valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
        if v not in valid_types:
            raise ValueError(f"task_type must be one of: {valid_types}")
        return v

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
    
    def _download_from_s3(self, model_name):
        try:
            logging.info(f"Attempting to load model {model_name} from S3...")
            model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
            if "Contents" not in model_files:
                raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
            s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
            logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
            return s3_model_path
        except Exception as e:
            logging.error(f"Error downloading from S3: {e}")
            raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")

    def download_model_from_huggingface(self, model_name):
        try:
            logging.info(f"Downloading model {model_name} from Hugging Face...")
            model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
            model_files = os.listdir(model_dir)
            for model_file in model_files:
                s3_path = f"lilmeaty_garca/{model_name}/{model_file}"
                self.s3_client.upload_file(os.path.join(model_dir, model_file), self.bucket_name, s3_path)
            logging.info(f"Model {model_name} saved to S3 successfully.")
        except Exception as e:
            logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
            raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")

    def download_all_models_in_background(self):
        models_url = "https://huggingface.co/api/models"
        try:
            response = requests.get(models_url)
            if response.status_code != 200:
                logging.error("Error getting Hugging Face model list.")
                raise HTTPException(status_code=500, detail="Error getting model list.")
            models = response.json()
            for model in models:
                model_name = model["id"]
                self.download_model_from_huggingface(model_name)
        except Exception as e:
            logging.error(f"Error downloading models in the background: {e}")
            raise HTTPException(status_code=500, detail="Error downloading models in the background.")

    def run_in_background(self):
        threading.Thread(target=self.download_all_models_in_background, daemon=True).start()

    def load_model_and_tokenizer(self, model_name):
        try:
            model_uri = self._download_from_s3(model_name)
            model = AutoModelForCausalLM.from_pretrained(model_uri)
            tokenizer = AutoTokenizer.from_pretrained(model_uri)
            logging.info(f"Model {model_name} loaded successfully from {model_uri}.")
            return model, tokenizer
        except Exception as e:
            logging.error(f"Error loading model {model_name}: {e}")
            raise HTTPException(status_code=500, detail=f"Error loading model {model_name}: {e}")

@app.on_event("startup")
async def startup_event():
    model_loader.run_in_background()

s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
    try:
        validated_body = GenerateRequest(**body.model_dump())
        model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        if validated_body.task_type == "text-to-text":
            generation_config = GenerationConfig(
                temperature=validated_body.temperature,
                max_new_tokens=validated_body.max_new_tokens,
                top_p=validated_body.top_p,
                top_k=validated_body.top_k,
                repetition_penalty=validated_body.repetition_penalty,
                do_sample=validated_body.do_sample,
                num_return_sequences=validated_body.num_return_sequences
            )

            async def stream_text():
                input_text = validated_body.input_text
                generated_text = ""
                max_length = model.config.max_position_embeddings

                while True:
                    encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
                    input_length = encoded_input["input_ids"].shape[1]
                    remaining_tokens = max_length - input_length

                    if remaining_tokens <= 0:
                        break

                    generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)

                    stopping_criteria = StoppingCriteriaList(
                        [lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
                    )

                    output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
                    chunk = tokenizer.decode(output[0], skip_special_tokens=True)
                    generated_text += chunk
                    yield chunk
                    time.sleep(validated_body.chunk_delay)
                    input_text = generated_text

            if validated_body.stream:
                return StreamingResponse(stream_text(), media_type="text/plain")
            else:
                generated_text = ""
                async for chunk in stream_text():
                    generated_text += chunk
                return {"result": generated_text}

        elif validated_body.task_type == "text-to-image":
            generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
            image = generator(validated_body.input_text)[0]
            image_bytes = image.tobytes()
            return Response(content=image_bytes, media_type="image/png")

        elif validated_body.task_type == "text-to-speech":
            generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
            audio = generator(validated_body.input_text)
            audio_bytesio = BytesIO()
            sf.write(audio_bytesio, audio["samples"], audio["rate"], format="WAV")
            audio_bytesio.seek(0)
            return StreamingResponse(audio_bytesio, media_type="audio/wav")

        elif validated_body.task_type == "text-to-video":
            return {"error": "Text-to-video task type is not yet supported."}
        else:
            raise HTTPException(status_code=400, detail="Invalid task type")

    except Exception as e:
        logging.error(f"Error during generation: {e}")
        raise HTTPException(status_code=500, detail=f"Internal Server Error: {e}")

import uvicorn

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)