Spaces:
Sleeping
Sleeping
File size: 9,144 Bytes
f56cbc6 2957fb3 c11082c 800f3c5 ef91d2c ca9b40d e619e74 0c65dc8 800f3c5 16cb5fc 7f05389 16cb5fc 6742879 f56cbc6 0c65dc8 f56cbc6 86535fc f56cbc6 2957fb3 f56cbc6 2957fb3 3a145aa 0c65dc8 2957fb3 0c65dc8 7150020 2957fb3 f56cbc6 2957fb3 f56cbc6 2957fb3 d594fbc c11082c 0c65dc8 f56cbc6 0c65dc8 d594fbc 0c65dc8 16cb5fc 0c65dc8 2957fb3 0c65dc8 c11082c 0c65dc8 ef91d2c 6742879 0c65dc8 c11082c 0c65dc8 ef91d2c c11082c 0c65dc8 c11082c 0c65dc8 c11082c 0c65dc8 ef91d2c 0c65dc8 b88653d abecee2 2957fb3 0c65dc8 f56cbc6 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 c11082c 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 0c65dc8 2957fb3 ef91d2c 2957fb3 0c65dc8 ef91d2c 972e5ee ef91d2c 972e5ee f56cbc6 ef91d2c 0598c12 16cb5fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import logging
import threading
import boto3
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList, pipeline
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, field_validator
from huggingface_hub import hf_hub_download
import requests
import time
import asyncio
from fastapi.responses import StreamingResponse, Response
import torch
from io import BytesIO
import numpy as np
import soundfile as sf
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
app = FastAPI()
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
def _download_from_s3(self, model_name):
try:
logging.info(f"Attempting to load model {model_name} from S3...")
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
if "Contents" not in model_files:
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
return s3_model_path
except Exception as e:
logging.error(f"Error downloading from S3: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
def download_model_from_huggingface(self, model_name):
try:
logging.info(f"Downloading model {model_name} from Hugging Face...")
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
model_files = os.listdir(model_dir)
for model_file in model_files:
s3_path = f"lilmeaty_garca/{model_name}/{model_file}"
self.s3_client.upload_file(os.path.join(model_dir, model_file), self.bucket_name, s3_path)
logging.info(f"Model {model_name} saved to S3 successfully.")
except Exception as e:
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
def download_all_models_in_background(self):
models_url = "https://huggingface.co/api/models"
try:
response = requests.get(models_url)
if response.status_code != 200:
logging.error("Error getting Hugging Face model list.")
raise HTTPException(status_code=500, detail="Error getting model list.")
models = response.json()
for model in models:
model_name = model["id"]
self.download_model_from_huggingface(model_name)
except Exception as e:
logging.error(f"Error downloading models in the background: {e}")
raise HTTPException(status_code=500, detail="Error downloading models in the background.")
def run_in_background(self):
threading.Thread(target=self.download_all_models_in_background, daemon=True).start()
def load_model_and_tokenizer(self, model_name):
try:
model_uri = self._download_from_s3(model_name)
model = AutoModelForCausalLM.from_pretrained(model_uri)
tokenizer = AutoTokenizer.from_pretrained(model_uri)
logging.info(f"Model {model_name} loaded successfully from {model_uri}.")
return model, tokenizer
except Exception as e:
logging.error(f"Error loading model {model_name}: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model {model_name}: {e}")
@app.on_event("startup")
async def startup_event():
model_loader.run_in_background()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
validated_body = GenerateRequest(**body.model_dump())
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if validated_body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=validated_body.temperature,
max_new_tokens=validated_body.max_new_tokens,
top_p=validated_body.top_p,
top_k=validated_body.top_k,
repetition_penalty=validated_body.repetition_penalty,
do_sample=validated_body.do_sample,
num_return_sequences=validated_body.num_return_sequences
)
async def stream_text():
input_text = validated_body.input_text
generated_text = ""
max_length = model.config.max_position_embeddings
while True:
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
break
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
stopping_criteria = StoppingCriteriaList(
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
)
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
time.sleep(validated_body.chunk_delay)
input_text = generated_text
if validated_body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif validated_body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(validated_body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif validated_body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(validated_body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["samples"], audio["rate"], format="WAV")
audio_bytesio.seek(0)
return StreamingResponse(audio_bytesio, media_type="audio/wav")
elif validated_body.task_type == "text-to-video":
return {"error": "Text-to-video task type is not yet supported."}
else:
raise HTTPException(status_code=400, detail="Invalid task type")
except Exception as e:
logging.error(f"Error during generation: {e}")
raise HTTPException(status_code=500, detail=f"Internal Server Error: {e}")
import uvicorn
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|